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PREFACE

Ever since the year 1964, when the fundamental work of Eells-
Sampson, "Harmonic mappings of Riemannian manifolds" appeared,
the theory of harmonic maps has far outgrown its original scope
to develop the first general properties of harmonic maps and to
study the existence of harmonic maps in given homotopy classes
of maps between Riemannian manifolds (existence theory). To
mention only a few related branches of mathematics in which
harmonic maps occur not only on the level of illustrating exam-
ples but on the level of rethinking the basic ideas, I refer to
the recent developments of complex analysis, Morse theory with
calculus of variations and the theory of minimal maps.

The rapid expansion of the theory of harmonic maps, as menticned
above, is to be thanked for the advantage due to its universal
features but this fact, as far as writing a book on the subject
is concerned, plays the role of certain difficulty as well.

The present book is therefore, by no means, intended to be a
comprehensive introduction to harmonic maps but, rather, an ex-
pository which studies the geometry of harmonic and minimal maps
into spaces of constant curvature. Though I have tried to keep
the prerequisites to a minimum, and to make the book accessible
for students of mathematics, mathematicians and physicists, the
presentation can only be considered to be almost self-contained
as basic Riemannian geometry and representation theory are
applied rather than developed here; nevertheless, only those
proofs are omitted which would be incompatible with the general
scope. The background materials are given in their right places
without bogging the reader down with a long introductory chap-
ter. Each chapter begins with a concise introduction and ends
with a set of problems to help the reader’s comprehension of
the material. The exposition has a gradually increasing speed

which, I hope, would keep pace with the increasing interest.
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Preface

The first (introductory) chapter displays a basic material
on the general theory of differential operators on vector bun-
dles. The stress being on applicability, I give here a detailed
account on first and second order classical differential op-
erators of Riemannian geometry. For the convenience of the
reader, two specific sections summarize the basic facts of the
spectrum and the (full) isometry group of Riemannian manifolds.

In Chapter II particular emphasis is placed on the general-
ized Hodge~de Rham theory by developing a differential calculus
on twisted tensor bundles which is then specified leading to the
concept of harmonicity of maps.The great majority of this chap-
ter is devoted to the works of Eells-Sampson and Lichnerowicz
on harmonic maps into flat codomains; a theory which has also
proved to be fruitful in describing the geometric structure of
the nonnegatively Ricci curved manifolds. Basic fibre bundle
theory is used here.

The principal part of the book is essentially contained in Chap-
tersIII-IV, where the variational theories of harmonic and min-
imal maps are developed in a rather similar way offered by the
calculus of variations. The basic existence theory of harmonic
maps between spheres, due to R.T. Smith, is presented in Chap-
ter III in full details. Based on different ideas, the counter-
part of this theory for minimal maps, the Do Carmo-Wallach
classification and rigidity of minimal immersions between
spheres, is treated in Chapter IV with the necessary represent-
ation theoretical background material summarized in a specific
section.

In view of Chapter IV, a particularly interesting problem in

the theory of harmonic maps is their application to the study

of their rigidity properties. In Chapter V, introducing the
concept of infinitesimal rigidity, I deal with infinitesimal de-
formations and classification of harmonic maps of constant
energy density into spheres. A variety of examples is also given
here illustrating the fundamental concepts.

The differential geometry developed in Chapters I-~-II can
also be served to give global formulation of various physical
theories. In Chapter VI, as a theory of specific interest, I

describe some basic concepts of Yang-Mills fields. As a detailed



Preface v

exposition on the subject could fill a whole monograph, I
restrict myself to point out the close relationship between
energy, volume and Yang-Mills functionals by giving a calculus
of variations for Yang-Mills fields and proving Simons’
instability theorem.

I owe a great deal of help and encouragement to Professor
James Eells who, with a deep insight in the theory combined with
his kind personality, has guided me towards the problems that
determined my research activity over the last 5 years. I would
like to express my sincere gratitude to him. I am especially
grateful to Professor T.J. Willmore for his hard and dedicated
work who has acted as a referee and translation editor. Their
comments on the preliminary draft of the manuscript were in-
valuable aids for preparing the final version.

I had many long and informative discussions with A. Elbert on
differential equations used in the book; I am also indebted to
him. Thanks are due to numerous mathematicians and physicists
who, by their lectures, private talks and papers, taught me a
lot of aspects of differential geometry; I am particularly
grateful to J.C. Wood and L. Lemaire for their useful sugges-
tions to improve the original text and to G. D'Ambra, P. Forgéics,
A. Lichnerowicz, S. Rallis, H.J.C. Sealey, J.H. Sampson, J.
Szenthe and N. Wallach. Last (but not least) I would like to
express my dgratitude to my wife for her boundless patience and

excellent work of typing the whole manuscript.

Gabor TOth

The Ohio State University
231 West 18th Avenue
Columbus, Ohio 43210
U.S.A.

January 1984
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CHAPTERII

Differential Operators on
Vector Bundles

In this chapter we present some preliminary material on differ-
ential operators acting on (real) vector bundles. In Section 1
we review, in some detail, the elementary theory of differen-
tial operators. The proof of the finiteness theorem and the
Hodge~de Rham decomposition for elliptic self-adjoint differen-
tial operators is omitted, since proving it in details would
take us too far afield. The general framework is specified in
Sections 2-6 to present a rapid elementary course on first and
agcond order classical differential operators occurring in Rie-
mannian geometry whose inevitable importance is reflected
throughout this book as well. For later reference, to close the
chapter, we attach two additional sections dealing with the
spectrum and the (full) isometry group of Riemannian manifolds.
Some of the well-known proofs will only be sketched or even
omitted since all these are readily available in standard books
on differential geometry, such as Berger, Gauduchon and Mazet
(1971), Helgason (1978), Kobayashi and Nomizu (1963) and (1969),
Lichnerowicz (1955), de Rham (1955), Wells (1973).

1. DIFFERENTIAL OPERATORS AND SYMBOLS

et 7V and ¥ be (real, finite dimensional) vector spaces and

4 W
denote by €y and ey

set UCR™ with typical fibres V and W , respectively. 4 dif-

the trivial vector bundles over an open

ferential operator of order r 1is a linear map

©

D :cC (eg) > c"’(eZ)



2 Differential Operators on Vector Bundles [Ch. 1

(sending a section of sV to a section of EZ) of the form

U
D = r 4 D° 1.1
o \ l< p r ( )
pler
where the summation runs over all multi-indices p=(pl,...,pm)€
m . P P
GZT with lo| = = o° <r, 0P = (—AT) Lo (—ﬁ;) " and
=1 3x dx

Ap : U » Hom(V,W)

is a (smooth) map.t The symbol or(Do) of the differential
operator Do is the map

m
Op(Do) : UxR" > Hom(V,W)

defined by
OY'(DO) (x,y) = |ir ypAp(x), x€U ,
P (1.2)
yo= looooyMer”
0 P
where 3° stands for (yl) l...(ym) "eR . For fixed x€U , the

symbol cr(Do)(x") is then a homogeneocus polynomial of degree
r with coefficients in Hom(V,¥). The differential operator
DO is said to be elliptie if cr(Uo)(x,y)eHom(V,W) is an iso-
morphism for all z€U and O#yeR” .

Example 1.3. Set V=W=R and r=2 . Then (l.l1l) can be rewritten
as n 82

Do = T Ci.-—z——v + linear part,

i,5=1 "ax*ax?
with Cij = le.:U+R , 1,9=1,...,m , and its symbol, for fixed
x€U , is the gquadratic form
m i g 1 m m
o, (D ) (x,y) = T C..{x)y yJ Yy = (Y sy YERT L
27 i,45=1 J

+Throughout this bock, unless stated otherwise, all manifolds, maps, bundles,
etc. will be smooth, i.e. of class (% . For the notations explained briefly
in the text, see Summary of Basic Notations.
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Thus, D is elliptic if and only if the matrix ((x) =
O m

= (Cij(x))i,j=l

Let £ and n be (real) vector bundles over an m-dimensional

€M(m,m) 1is nonsingular for all x€U

manifold # + with typical fibres V and W¥ , respectively. A
linear map
Do cTE) » T (n)

is said to be a loecal operator if for any section veC” (&)
vanishing on an open set UCM we have (Dv)|U=O . Then, for
each open set UCH# , there is induced a local operator

Dz giv)y » Tloy .
In fact, given xOGU , choose a scalar w€C (M) on M with

compact support in U such that u equals 1 in a neighbourhood

of z_ . Then, for vecT (z|U) , we set
(pv) (x,) = (Dwv)) (=) ,

where

p(x)v(x) if x€U

(nv) (x)
o] if a¢U .

Further, if (U,¢) is a local coordinate neighbourhood on ¥
such that the restrictions ¢|V and n|U are trivial then,

choosing trivializations

oo EIU > aV

W
U U and kU :n|U > ¢

U (1.4)

the local operator D gives rise to a linear map

DTy

vV =)
o ! s¢(U))->C

W
ey (uy)

by setting

+ Unless stated otherwise, all manifolds considered in this bock are assumed
to be connected.
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Do) = k(DAL o)) ee™L, vec™ (e (1.5)

s -
The local operator p:cT(g) + ¢®(n) is said to be a differen-
tial operator of order r if for every local coordinate
neighbourhood (U,¢) and trivializations hU » kU (in (1.4))
the corresponding local operator Do is a differential operator
of order r , i.e. it has the form given in (1.1). DO is then
called a local coordinate representation of D . The set of all
differential operators D:¢ (£) + ¢"(n) of (a given) order

r€Z+ is denoted by Diffp(E,n) ; it is, in fact, a module over
the algebra ¢® (M) of scalars on M . Clearly, Diffolg,n)

= Hom(f,n) and, for each rGZ+ , we have the canonical inclus-
ion DiffP(E,n)CDiffP+l(E,n) .

To define the symbol of a differential operator DeDiffP(E,n)
of order r€Z , we consider the fibre bundle 7’ (M) over ¥
with typical fibre Rm\{o} obtained from the cotangent bundle
T*(M) of M by removing the zero section. The symbol cP(D)

of D will then associate to each cotangent vector “xeTé(M)
(=T;(M)\{O}) , x€M , a linear map

OP(D)(ax) B, rong,
between the fibres of ¢ and n at & , respectively, in the
following way. First, choose a scalar u€c” (M) with u(x)=0
such that o equals the total differential du at xz€M . Then,
for each vxegx , we set

0, (D) ta)v, = (D( u¥+v)) (x)en_ , (1.6)

where v6€¢" (¢) is an extension of v, - We claim that the sym-
bol cr(D) is well-defined (i.e. the value cr(D)(ax)vx does
not depend on the choice of u and v) and that, for the triv-
ial bundles £=eg and ”=EZ , with vCR™ open, we recover our
earlier agreement (1.2). Assume that DGDiffr(E,n) has local
coordinate representation (1.1) with respect to a local coord-

inate neighbourhood (U,¢) and trivializations hU ’ kU in

(1.4). Then, setting w = %% wFevec®(g) , by (1.5), we have
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kLD W)) (@)} = (kR () D) (@) = Dy ((hym) =671)) (6 (2)) =

_l)

T4 (@) 0% ((Ryw) e6™ 7)) (4 ()

lof<r

As the scalar ur°¢—l vanishes in r-th order at ¢ (x) ,

1

D° (o) o0™0) = 0P (G wee™he (rye) w6 Y (6 () =

1 -1
= 0P wTed ) (e (@)) Ry (v ),

for every multi-index pGZZ with |po|<r . Further, by

d(ua¢—l)¢(x) = (¢_1)*dux = (¢—1)*axeT$(x)(Rm) , an elementary
calculation yields
™% )P if [o]=r
2° (h uTeeTh (o () =
(@] if Ip|<1‘

where ~:T*(R") » R” stands for the canonical identification
defined by parallel transport of cotangent vectors in T*(Rm)

to the origin. Summarizing, we obtain

kA0 W @) = T g (e k) =

r!
lo|=r
= 0, (0 ) (6 (@), yIhy(w)
where y = ((cb_l)*ax)v . In other words, the diagram

0, (D) (a,)

0. (D) (¢ (z) ,y)
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commutes and the claim follows.
Extending the earlier definition, a differential operator
DGDiffr(E,n) is said to be elliptic if the linear map

- 1 3 4 r
or(D)(ux).Ex *n, 1is an isomorphism for all axeT (M) .

Remark. A result of Peetre asserts that any local operator
Decm(g) + ¢”(n) has local coordinate representation (1.1) over
suitably chosen coordinate neighbourhocds (U,4) of ¥ . (For
a proof, see Narasimhan (1968) pages 175-176.)

Differential operators compose well as stated in the following.

Proposition 1.7. Let &,n and ¢ be vector bundles over a
mantifold M . If DGDiffr(E,n) and D’eDiffS(n,c) then the lin-
ear map

prep:c”(8) » 7 (z)

is a differential operator of order r+s and its symbol is
given by
4 e = ’ o

UP+S(D D) US(D ) cP(D) .
Proof. The composition D’'.D being a local operator, we work
out a local coordinate representation of D’'-D over a coord-
inate neighbourhood (U,¢) . Assume that D and D' have local
coordinate representations

D= r 4p°
lolsr °
and
p’ = s B D°
lo|<s °

over U , respectively. By making use of the Leibniz rule, we

have
D'eD = r BDp°{ 1t 4D°} =
o P
fo]<s lo]<r
g o=y pHy
= z s B ()P AD)D =

lofzr |o]zs Yso
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= z B, 2 (Tf y (0P 4" = z ¢ ot ,
lol<r Jol<s 7 7<ptas 7P ° |t]cr+s  ©
where
+g—
.= z (28,07 A (1.8)
lol<r, lofcs T7°
p<t<pto
Hence, D’'.D 1is a differential operator of order r+s . To com-

pute its symbol, we first note that, for |[t|=r+s , (1.8) redu-
ces to the form

CT(x) = E Bc(x)AD(x) ,  x€¢ {(U) .
pl=r
p+o=t
Thus, by the identity yp+c = yPy° , yERm , (1.2) entails
O g (D7 oD) (z,y) = b yTCT(x) =
[t]=r+s
= z y" I B (x)4_(x) = T . yPy%B (24 (x) =
lt]=r+s lo|=r ° lol=r lof=e ‘ °

pto=t

= { z ycBo(x)}{

EoytA (@)} = o (D7) (my) e (D) (@,y) . Y
lo]=s -

lol=r

To introduce the notion of adjoint for differential operators
we have to endow the linear subspace CZ(E)CCw(E) of sections
of compact support with a suitable prehilbert structure. For
this, we first denote by 07 (M) (=¢” (AT (r*(M)))) , r€Z, , the
veetor space of forms of degree r on M . Clearly, 0¥ (y)={0}
for »r>m . The direct sum D(¥) = g D" (M) with the exterior

r=0
multiplication A becomes an algebra over R (usually called

the exterior algebra of M) . Taking M to be a Riemannian
manifold, the metric tensor g = (,)GCm(SZ(T*(M))) , being non-

singular (in fact, positive definite) on each of the fibres of
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I'(M) , induces a canonical isomorphism y:T(M) > T*(M) by sett-
ing
(Y(Xx))(Ym) = g(Xx,Yx) = (%x,Yx) ’
(1.9)
Xx’yxeTx(M) ’ EM .

(The induced isomorphism between the Cm(M)—modules of vector
fields V(M) (=¢"(T(M))) and 1-forms Dl(M) on M is also
denoted by <y .) Furthermore, assuming that M is oriented,
the volume form VOl(M,g)GDm(M) can be locally given by

m

vol(M,g) = y(EL) A...n y(@E™ , (1.10)

where {Ei}g=l is an oriented orthonormal moving frame of T (M)
over a local coordinate neighbourhood (U,¢) . (More generally,

if {El}g=f:V(U) is any local oriented moving frame with

m . .
g= 1 . gin<E7“)sy(EJ) P9 60T W), =l
Trd=

then

vol(#,g) = w(det(gij)$’j=l y(El) Mook y(Em) .

For example, classically, if (U,¢) is oriented with associ-
ated local base {dx$}$=f:Dl(U) then the metric tensor and vol-~

ume form can be written as

m

g = b3 g..dlede , g..GCN(U) ,
i,4=1 g 1J
(1.11)
1,7=1,...,m ,
and
vol(M,g) =1/g-dml Aok da
(1.12)
= det(g, )
g 91574, 4=1 "

respectively.) By standard Riemannian geometry, the existence
of the volume form enables to integrate scalars of compact

support en M and, as usual,
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[ w vol(M,g) , wec_(M) ,
M

stands for the integral of u over ¥ .

A fibre metriec on a (real) vector bundle £ over M 1is a
section (,)EGCw(SZ(E*)) whose restriction to each of the fibres
of E 1is positive definite. The vector bundle ¢ with (')E
(or rather, the pair (& , (’)g) ) is said to be a Fuclidean
vector bundle over M . Then, for wv,v'€C"(¢) , the scalar
product (v,u’)E is a scalar on ¥ and, assuming supp vN
Nsupp v'C¥ to be compact, the global scalar product of v

’

and v is defined by

((v,0") . =71 (v,v"), vol(M,q) . (1.13)
g M £
The linear space CZ(E) endowed with the global scalar product

(D) £ becomes a prehilbert space.

Proposition 1.14. Let & and n be Euclidean vector bundles
with fibre metrics (')E and (,)n , respectively, over an m-
dimensional oriented Riemannian manifold M . Then, for any dif-
ferential operator D€Diffr(5,n) there exists a unique differ-

ential operator D*GDiffr(n,E) such that
((Dv,w)) n = (v, D*w)) £ (1.15)

for all vGCZ(E) and wGCZ(n) . Moreover, the symbols are rela-
ted by the formula
r t

o, (0% = (-1)7-Fs (D) , (1.16)

where °© denotes the transpose.

Proof. As 02(5) is a prehilbert space, uniqueness of the
adjoint on C;(E) is obvious. Also, by standard argument, D¥*
is unique on the whole of (¢”(£) . The question of existence,
by uniqueness, can easily be reduced to local existence of D* ,

Vm ’ n=swm and the integration on R"

R R

i.e. we may set u=R" , E=e



