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Preface

.

Recent years have seen dramatic progress in shape recognition algorithms applied
to ever-growing image databases. They have been applied to image stitching, stereo
vision, image retrieval, image mosaics, solid object recognition and video and web
shape retrieval. More fundamentally, the ability of humans and animals to detect and
recognize shapes is one of the enigmas of perception. Digital images and computer
vision methods open new ways to address this enigma.

Given a dictionary of digitized shapes and a previously unobserved digital image,
the aim of shape recognition algorithms is to know whether some of the shapes in
the dictionary are present in the image. This book describes a complete method that
starts from a query image and an image database and yields a list of the images in
the database containing the query shapes.

Technically speaking there are two main issues. The first is extracting invariant
shape descriptors from digital images. Indeed, a shape can be seen from various
angles and distances and in various lights. A shape can even be partially occluded
by other shapes and still be identifiable. Because the extraction step is so crucial,
three acknowledged shape descriptors, SIFT (Scale-Invariant Feature Transform),
MSER (Maximally Stable Extremal Regions) and LLD (Level Line Descriptor) will
be introduced.’

The second issue is deciding whether two shape descriptors are identifiable as
the same shape or not. This decision process will derive from a unique paradigm,
called the Helmholtz principle. For each decision a background model is introduced.
Then one decides whether an event of interest (such as the presence of a shape in
the image) has occurred if it has a very low probability of occurring by chance in
the background model. Thus from the statistical viewpoint shape identification goes
back to multiple hypothesis testing.

A shape descriptor is recognized if it is not likely to appear by chance in the back-
ground model. At a higher complexity level, a group of shape descriptors is recog-
nized if its spatial arrangement could not occur just by chance. These two decisions

! In a recent review paper on affine invariant recognition written by a pool of experts, SIFT and
MSER were actually acclaimed as the best shape descriptors [122].

\Y



vi Preface

rely on simple stochastic geometry and eventually compute a false alarm number
for each shape descriptor. The lower this number, the more secure the identification.
In that way most familiar simple shapes or images can be reliably identified. Many
realistic experiments show false alarm rates ranging from 10~ to less than 1073%.

All in all these lecture notes prove that many shapes can indeed be identified.
For these shapes one needs no a priori model and no training, just one sample of
the shape and what statisticians call a background model, or a null model. In the
case of shape recognition, the term background is to be taken to the letter. By the
Helmbholtz principle a shape is conspicuous if and only if it cannot be generated by
the image background on which it is perceived. The background model is therefore
easily learnt from the image database itself.

The above description should not be taken to suggest that the shape recognition
problem is solved. The methods described only apply to solid shapes and not to
deformable shapes. They only deal with individual shapes and images Such as logos
or paintings, and not with wide classes of objects such as all humans, all cats or
all cars. This latter problem is known as categorization and is still widely open to
research.

The authors are indebted to their collaborators for many important comments
and corrections, particularly to Andrés Almansa, Yann Gousseau and Guoshen Yu.
David Mumford and another anonymous referee made valuable comments which
reshaped the book. All experiments were done using the public software MegaWave
(authors: Jacques Froment and Lionel Moisan). The SIFT method is also public and
downloadable.

The present theory was mainly developed at the Centre de Mathématiques et
Leurs Applications, at ENS Cachan, at the Universitat de les Illes Balears and
at IRISA, Rennes. It was partially financed for the past eight years by the Cen-
tre National d’Etudes Spatiales, the Centre National de la Recherche Scientifique,
the Office of Naval research (grant NO0014-97-1-0839) and the Ministere de la
Recherche (project ISTI-RNRT), and the Ministerio de Educacion y Cultura (project
MTM2005-08567). Special thanks to Bernard Rougé and Wen Masters for their
great interest and support. We are indebted to Nick Chriss for numerous stylistic
corrections.

Frédeéric Cao

José Luis Lisani
Jean-Michel Morel
Pablo Musé
Frédéric Sur
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Chapter 1
Introduction

1.1 A Single Principle

Digital images became an object of scientific interest in the seventies of the last
century. The emerging science dealing with digital images is called Computer Vi-
sion. Computer Vision aims to give wherever possible a mathematical definition of
visual perception. It can be therefore viewed in the realm of perception theory. Im-
ages are, however, a much more affordable object than percepts. Indeed, digital im-
ages are sampled real or vectorial functions defined on a part of the plane, usually
a rectangle. They are accessible to all kinds of numerical, geometric, and statisti-
cal measurements. In addition, the results of artificial perception algorithms can be
confronted to human perception. This confrontation is both advantageous and dan-
gerous. Experimental results may easily be misinterpreted during visual inspection.
The results look disappointing when matched with our perception. Obvious objects
are often very hard to find in digital images by an algorithm.

In a recent book by Desolneux et al. [54], a general mathematical principle, the
so called Helmbholtz principle, was extensively explored as a way to define all visual
percepts (gestalts) as large deviations from randomness. According to the main the-
sis of these authors one can compute detection thresholds deciding whether a given
geometric structure is present or not in each digital image. Several applications of
this principle have been developed by these authors and others for the detection of
alignments [50], boundaries [51, 35], clusters [53, 33], smooth curves and good con-
tinuations [30, 31], vanishing points [2] and robust point matches through epipolar
constraint [128].

These works make extensive use of a computed function, the so called number
of false alarms (NFA) of a perception. The NFA of a perception is the expected
number of times this perception could have arisen just by chance in the background.
An observed configuration in an image can be numerically defined as a perception if
and only if its NFA is smaller than 1. Experimental evidence has confirmed that the
NFA of many human percepts of geometric figures is actually much smaller than 1,

E. Cao et al., A Theory of Shape Identification. Lecture Notes in Mathematics 1948. 1
(© Springer-Verlag Berlin Heidelberg 2008



2 1 Introduction

typically less than 10~" where n ranges from 10 to 100 and more. See [52] and the
textbook [54].

Thus theory and experiments give a mathematical and experimental basis to the
existence of sure percepts. Their existence had been stated for a long time by phe-
nomenology, in particular the Gestalt theory [95], but without quantitative evidence.

The idea that perceptions are objects unlikely to form just by chance in a back-
ground goes back to Helmholtz [83]. This principle could not be tested until images
became digital and therefore accessible to computational experiments. Before the
above-mentioned works, there had been several attempts to define percepts as excep-
tional events. Stewart [168] proposed to detect planes in a cloud of points by what
he called the MINPRAN method. He computed the probability that MINPRAN will
“hallucinate a fit where there is none”. This probability was computed under the a
contrario assumption that the points were randomly distributed. Lowe [112] pro-
posed a detection framework based on the computation of accidental occurrence.

In other words, we can shift our attention from finding properties with high prior expecta-
tions to those that are sufficiently constrained to be detectable among a realistic distribution
of accidentals.[...] Even when we do not know the ultimate interpretation for some grouping
and therefore its particular a priori expectation, we can judge it to be significant based on
the non-accidentalness criteria.

Later Barlow [17] interpreted the perceptual goals of the neocortex as a search for
suspicious coincidences. In the same spirit, Grimson and Huttenlocher [75, 76] pro-
posed to compute shape recognition thresholds from a null model viewed as the
conspiracy of random.

There is a common sense objection to applying the Helmholtz principle to shape
recognition. Watching the sky, one often sees castles, cats and dogs in the clouds.
Humans have a high capacity for hallucinating familiar generic shapes such as faces
in rich visual environments. Thus the Helmholtz principle is not suited for all sorts
of shapes.

The situation is, however, quite different regarding more specific iconic shapes
such as letters, logos and in general solid shapes. One sees faces in the sky, but
certainly not this or that particular face. It is to be expected that any complex enough
solid shape will be recognizable in the Helmholtz sense: no random arrangement
would be able to reproduce it accurately.

The mathematics to prove this are quite simple. Let S and &’ be two shapes ob-
served in two different images and which happen to be similar. Denote their (small)
Hausdorff distance after registration by § = d(S,S’). Assume we know enough of
the background model to compute the probability Pr(S,d) = Pr(d(S,~) < §)
that some shape in the background, X' be as similar to S as S’ is. If this probability
is very small one can deduce that S’ does not look like S just by chance. Then S
and S8’ will be identified as the same shape.

Digital images contain thousands of significant shape elements that constitute
their shape contents. (Several kinds of shape elements, or descriptors will be con-
sidered in this book.) Controlling the number of wrong matches involves the com-
putation of the probability of a casual match with the background. This probability
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should be very small. But also the number of tests, which can be huge, must be
under control.

Definition 1. Let Z and Z’ be two images and N, N’ the number of shape elements
in each. Let S and S’ be two shape elements extracted from I and I’ respectively,
lying at distance 6. We call number of false alarms of the match between S and S’

the number
NFA(S,S') =N-N'-Pr(d(S,X) <9).

If NFA(S,S’) is much smaller than 1, one deduces that " could not look like S
just by chance and concludes that S and S’ have the same shape.

There is an important phenomenological consequence: Shapes can be defined with-
out learning, that is without empirical knowledge. By definition a shape is any part
of an image which has been identified (in the sense of low NFA) at least once in
another image.

From an empirical point of view, there are two kinds of shapes. First, any solid
physical object can be photographed under many views and illuminations. If, by us-
ing the above definition, two snapshots of the same physical object happen to contain
recognizable shape elements, one may say that the object itself is identifiable. These
shape elements will constitute the object signature.

Second, humans build all kinds of standardized objects. Likewise, two different
standard objects can be identified if they stem from the same industrial process. This
also applies to the very numerous iconic planar shapes generated by human visual
communication, in particular characters and logos. In the experimental parts of this
book, we shall study the identifiability of several such iconic shapes: the lower the
NFAs they generate at a given Hausdorff distance, the more recognizable they are.

As a consequence of the present study, one can define solid shapes as equivalence
classes of recognized pairs without reference to empirical knowledge or ground
truth. Thus, one should demonstrate the existence of, say, the Coca-Cola logo just
by the fact that a certain group of shape elements appears in several images with very
low NFA for all pairwise comparisons. Experiments will compare several snapshots
of the same painting or poster, various images extracted from the same movie, or
various logos of the same firm. The aim in all cases is to single out and group in
clusters all shape elements common to both images. Conversely, the same method
gives a negative answer when two images have no shape in common. In that case
the NFA is above 1, which means that the shape is likely to occur casually in the
background.

From the mathematical and numerical point of view, the main challenge in the
whole study is the accurate computation of numbers of false alarms (NFA). This
requires the computation of very small probabilities. Small probabilities cannot be
directly measured from a shape database as frequencies. Thus, a probabilistic model
of the set of all possible shapes should be built. Such a realistic experimental back-
ground model should be made of a large and representative set of all kinds of digital
images. Unfortunately, there is no available probabilistic model for a large set of
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images. It is as hopeless as building a global model of the world. Even if such a
model were available, one would still face the challenge of computing accurately
the probability of very rare events in this world model.

Fortunately enough it is possible to overcome or rather to circumvent these two
obstacles. The only information needed is the probability for a background shape
to be very close to a given query shape. By a geometric independence argument,
this probability will be made into a product of much larger probabilities. These
probabilities instead become observable as frequencies in a small image database.

1.2 Shape Invariants and Consequences

1.2.1 Shape Distortions s

In order to find the shape invariance classes, it suffices to give a rough typology
of the transformations that affect images but not our recognition of the shapes they
contain. Following Lisani et al. [109], the main classes of perturbations which do
not affect recognition are:

1. Changes in the color and luminance scales (contrast changes). According to
Gestaltists Attneave [13] and Wertheimer [179], shape perception is indepen-
dent of the gray level scale or of measured colors.

The concentration of information in contours is illustrated by the remarkable similar
appearance of objects alike in contour and different otherwise. The “same” triangle,
Jor example, may be either white on black or green on white. Even more impressive is
the familiar fact that an artist’s sketch, in which lines are substituted for sharp color
gradients, may constitute a readily identifiable representation of a person or thing.
Attneave, 1954.

[ stand at the window and see a house, trees, sky.

Theoretically I might say there were 327 brightnesses and nuances of color. Do I have
“327”? No. I have sky, house, and trees. It is impossible to achieve “327” as such. And
yet even though such droll calculation were possible and implied, say, for the house
120, the trees 90, the sky 117 — I should at least have this arrangement and division of
the total, and not, say, 127 and 100 and 100; or 150 and 177. Wertheimer, 1923.

Refer to Fig. 1.1 designed by E. H. Adelson for a striking illustration of illumi-
nation invariance.

2. Occlusions and background modification. Shape recognition can also be per-
formed in spite of occlusion and varying background, as shown in Fig. 1.2.
The phenomenology of occlusion was thoroughly studied by Kanizsa [95] who
argues that occlusion is always present in every day vision: most objects are
partially hidden by others. Human perception must therefore be able to recog-
nize partial shapes. Conversely, if a shape occludes a background, its recog-
nition is invariant to changes in the background. This independence of shape
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Fig. 1.1 Contrast change invariance. In the left hand image, the A and B squares have ex-
actly the same gray level. This incredible fact is easily checked in the right hand image
where A and B are linked by two rectangles with the same gray level. This experi-
ment by E.H. Adelson illustrates the unreliability of brightness perception and the invari-
ance of shape recognition with respect to illumination changes. (Courtesy E.H. Adelson,
http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html)

recognition from its background is known in perception psychology as the
figure-background problem (Rubin [153]). The figure-background problem is
part of the occlusion problem. A shape is superimposed on a background, which
can be made of various objects. How can the shape be singled out from that clut-
ter? This poses a dilemma. Extract the shape and then recognize it or extract it
because it has been recognized?

Fig. 1.2 Left: According to Kanizsa and his school, shapes can be recognized even when they
undergo several occlusions. Our perception is trained to recognize shapes which are only seeable
in part. Here the occluded cross can be easily recovered. Right: the figure-background problem. Our
perception is adapted to recover a figure on the foreground, independently from the background
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3. Classical noise and blur, inherent to any perception task and to any image gen-

erated according to Shannon’s theory.

Geometrical distortions or deformations. Perspective is deeply incorporated
in human perception. Humans can recognize objects and shapes under perspec-
tive distortion as long as perspective is not too strong. Recognition is also in-
variant to elastic deformations, always within some limits.

The previous four invariant properties fix requirements a good image represen-

tation should comply with. It will be necessary to formulate a mathematical model
for each of them and to derive a well adapted image representation.

1.

a. The local contrast invariance requirement. A digital image is usually de-

fined as a function u(x), where u(x) represents the gray level or luminance
at z. The first task is to extract from the image topological ‘information
independent from the varying and unknown contrast change function of
the optical or biological apparatus. One can model such a contrast change
function as any continuous increasing function g from R™ to R*. The real
datum corresponding to the observed u could be as well any image g(u).
This simple argument can lead to select the level sets of the image [161] or
its set of level lines as a complete contrast invariant image description [37].
If u is of class say C, then the level lines are the connected components
of u=1(\), which are C! curves for almost every A € R. This is the choice
adopted by the LLD (level line descriptor) and MSER (maximally stable
extremal regions) methods. Another way to handle the contrast invariance
requirement is to encode only the direction of the gradient of u, Il[;—zl and
not the gradient Du itself. Indeed, the direction of gradient is normal to the
level line and is not altered by any increasing contrast change. This is the
way adopted by the SIFT method to cope with contrast changes.

. The concentration of information requirement. Somewhat in contradic-

tion to this contrast invariance principle, the Gestaltist Attneave [13] as-
serted that “Information is concentrated along contours (i.e., regions where
color changes abruptly)”. Indeed not all the level lines are needed to have a
complete shape description. Most of them are due to noise or to tiny illumi-
nation changes. Thus, it makes sense to select only the most contrasted level
lines. That is to say, those along which the gradient of u is large enough.
Such a selection is not invariant to all contrast changes, since it explicitly
uses the gradient value. However, it is still invariant to affine global contrast
changes. Figure 1.3 shows an example of such level lines selection. The se-
lection of the most contrasted level lines will be the subject of Chap. 2. It
will be applied to the LLD and the MSER methods. The SIFT methods ac-
tually weights its gradient orientation histograms by the gradient magnitude
(see Chap. 10).

2. The occlusion and figure-background requirements. Even the best adapted

choice of level lines is not totally suited to describing image parts. Indeed, when
a shape A partially occludes a shape B, the level lines of the resulting image



1.2 Shape Invariants and Consequences 7

Fig. 1.3 Top left: original image, 83,759 level lines. Top right: meaningful boundaries (883 level
lines). Bottom: reconstruction from the meaningful boundaries. Only 883 boundaries remain. The
structure of the image is preserved and perceptual loss is very weak. The LLD and MSER methods
use these boundaries for building up normalized shape descriptors. See Chap. 4

are a concatenation of pieces of the level lines belonging to A and to B. This is
shown with a very simple example in Fig. 1.4. Even if a shape is not occluded,
but simply occludes its own background, there may be no level line surrounding
the whole shape, as shown in Fig. 1.5. These remarks show that whole level lines
are too big and too sensitive to occlusion. In order to overcome this obstacle the
general idea is to build shape recognition on shape elements as local as possible.
The SIFT method takes small image patches. The LLD method splits level lines
into small pieces.

3. The smoothing requirement. It is an easy experiment to check that shapes are
easily recognized in images subject to noise. This means that shape information
is not affected by noise. Noise introduces details which are too fine (in rela-
tion to the essential shape information) to be perceptually relevant in terms of
recognition. Quoting Attneave (ibid., 1954):

It appears, then, that when some portion of the visual field contains a quantity of
information grossly in excess of the observer’s perceptual capacity, he treats those
components of information which do not have redundant representation somewhat as a
statistician treats “error variance”, averaging out particulars and abstracting certain
statistical homogeneities.



