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PREFACE TO THE GERMAN EDITION

Numerical analysis deals with methods of solving the typical, fundamental,
mathematical problems encountered in the various fields in which mathematics is
applied in practice, and with the mathematical analysis and handling of these
methods. The problems which arise in applications to the fields of science and
engineering include, for example, the calculation of special functions, the approxi-
mate calculation of the derivatives, and approximate integration, of these functions,
the solution of algebraic equations and of systems of linear and non-linear equa-
tions, the approximate solution of differential and integral equations, and so on.
For practical purposes predominant interest attaches to those methods which make
it possible to solve these problems numerically and approximately, using for this
purpose the efficient electronic computers which nowadays are generally available.

In this book the knowledge of the differential and integral calculus and of linear
algebra customarily acquired in the first year’s work at a university is presupposed.
The numerical exercises are designed so that they can be solved during a course of
practical work on the computer by students who have previously taken a fortnight’s
course in some problem-oriented programming language such as Algol or Fortran.
The numerical results for these exercises were computed in this way on the Univac
1108 computer of the computing centre of Frankfurt University, for instance. The
problem-oriented programming languages of big modern computer systems make
computations in the field of complex numbers possible without extra difficulty. A
number of problems such as, for instance, the determination of the zeros of poly-
nomials or the eigenvalues of matrices are, in general, completely soluble only in
the field of complex numbers. For initial-value problems for ordinary differential
equations the solution of the equation in the complex field is also of importance.
For these reasons the methods and processes in this book have been formulated, so
far as this could be done without extra trouble, for a field K denoting either the
field R of the reals or the field C of the complex numbers.

The limited size of this textbook necessitated limitation and selection of the
methods and processes to be presented. No attempt has been made in this book to
present the greatest possible number of different methods, even merely as “recipes”
for the individual problems. Rather we discuss the fundamental concepts and the
properties of typical methods. With this background knowledge the reader will be
able to follow up particular topics by means of the comprehensive books and stan-
dard works mentioned at the beginning of each section, for example. In the space
available, too, the reproduction of numerical results has to be limited; the numerical
exercises given at the end of each section should serve to illustrate the methods, but
they cannot always pretend to characterize typical numerical properties.

This book originated from lectures and practical courses which the first-named
author has given regularly for several years at the University of Frankfurt, and from
lecture notes for the practical mathematical course written by both authors jointly.

A brief survey of the presentation and contents of the book follows, together
with some indications of results which stem from other lecture notes and



xii

unpublished work by the first-named author. Chapter | acquaints the reader with
the concepts and methods which are needed to calculate functions and their zeros,
and to make best use of the relevant handbooks. Chapter II is concerned with inter-
polation and approximate differentiation and integration. In addition to the classi-
cal quadrature formulae, which are derived by means of the Hermite interpolation
formula, we discuss Romberg integration and the general Gaussian quadrature
formulae. The subjects of Chapters III and IV are approximate methods for solving
systems of linear and non-linear algebraic equations and the solution of eigenvalue
problems for matrices. Section 5 therefore presents the basic concepts for finite-
dimensional arithmetic spaces, viz., norms of vectors and matrices, inner-products,
and the most important properties of eigenvalues and eigenvectors of matrices. The
numerical methods for solving systems of linear equations can be classified as the
methods of elimination, orthogonalization, and iteration. In order to solve systems
of non-linear equations by the Jacobi method or the Gauss-Seidel method, we dis-
cuss in Section 9 the method of successive approximations for contractive mappings
and for monotone mappings, and also the Newton methods. In the solution of eigen-
value problems we restrict our attention to the symmetric case and the power
method, the classical Jacobi method, Krylov’s method with Lanczos-orthogonaliz-
ation to obtain a tridiagonal matrix and a Sturm sequence for calculating the eigen-
values, to inclusion theorems and a posteriori error-estimates for the eigenvalues
and eigenvectors. From the extensive range of numerical methods for solving differ-
ential equations, we have selected in Chapter V the one-step and multi-step methods
for the numerical integration of initial-value problems for ordinary differential
equations. Here we not only derive the approximation equations for these methods,
but also prove the convergence and stability of the methods.

In approximate methods the corresponding error-estimates are of fundamental
importance. The so-called a posteriori error-estimates, by which the difference
between the calculated approximate solution and the required solution can be esti-
mated from the residual obtained by a trial substitution of the approximation, are
of particular importance. For the solution of systems of non-linear algebraic equa-
tions we obtain in Section 9.2 an error-estimate of this kind, which does not depend
on any particular method. A corresponding error-estimate for the case of a single
variable is proved earlier in Section 2.2; from this result, moreover, the convergence
of regula falsi even in the complex field can be easily proved. In exactly the same
way a posteriori error-estimates can be given for eigenvalue problems for matrices.
For the approximations to the eigenvalues there are the well-known comparison
and inclusion theorems. Further, in Section 10.4, for the symmetric case, approxi-
mations to the eigenvectors are also estimated by the norm of the residual arising
from a trial substitution, and this at the same time gives, by means of the square of
the norm of the residual, an interesting error-estimate for the Rayleigh quotient
regarded as an approximation to an eigenvalue. In several places in the book ortho-
gonal polynomials are needed. So in Section 7.4 we present a simple, purely
algebraic theory of orthogonal polynomials, with propositions about their zeros,
recursion formulae, and particular representations, all of which are applicable to the
classical orthogonal polynomials with the Gaussian quadrature formulae and also to
the orthogonal Lanczos-polynomials of a matrix and to the minimal polynomial of
a vector. The idea of the spectral radius is not introduced here for the iterative
solution of a system of linear equations. In Section 8.3 we prove the convergence
of the Gauss-Seidel method or, more generally, of the corresponding relaxation
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methods for positive-definite matrices, after defining a norm suited to the problem,
by means of the method of contractive mappings. The one-step methods and multi-
step methods for initial-value problems present an important and typical application
of the fundamental concepts of consistency, convergence, and stability, and we
show that for Lipschitz-continuous methods consistency and convergence are
equivalent.

In the preparation of the manuscript Miss A. Raymond drew the diagrams, put
in the formulae, and helped with the proof-reading, and we wish here to thank her
for her active and valued collaboration. We also thank Miss E. Hilbricht for her care-
ful execution of the extensive typewriting work. Finally we thank the Teubner
Publishing House for their efficient production of our textbook.

FF. STUMMEL, K. HAINER
Frankfurt am Main
Summer 1971



FOREWORD TO THE ENGLISH EDITION

This book is the English translation of our book Praktische Matematik (published in
1971). Since that time economically-priced micro-computers and mini-computers
have become common. Consequently the possibilities of studying and trying out
numerical methods, as well as using them in practice, have been extended to a
remarkable degree. Nearly all the numerical exercises described in this book can
be carried out even on pocket-sized, programmable calculators, and students
will be able in this way to gain a far clearer insight into them.

The authors cordially thank the editor, Professor W. N. Everitt, for his work,
Mr. E. R. Dawson for the translation, and the publishers, the Scottish Academic
Press, for accepting this book into their series.

F. STUMMEL, K. HAINER

Frankfurt am Main
October 1976
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I CALCULATION OF FUNCTIONS
AND THE ZEROS OF FUNCTIONS

In practice the task of calculating functions is, as a rule, part of some wider
problem. In many fields of natural science and energineering, when problems are
stated in mathematical terms, ordinary functions or higher transcendental functions
appear in the mathematical formulation. This chapter presents a survey of important
analytical ideas about the representation, approximation, and calculation of such
functions. The object is to make the reader sufficiently well acquainted with repre-
sentations by infinite series, asymptotic expansions, and continued fractions, and
with Chebyshev approximations, as will be desirable if he is to use handbooks on
special functions.

The calculation of the zeros of given functions is also one of the basic tasks in
practical mathematics. The calculation of the zeros of polynomials, or the calcu-
lation of eigenvalues from the characteristic polynomial of a matrix, requires in the
general case methods of approximation which are applicable not only in the real
field but also in the complex field. Some of the approximation methods in this
chapter will later be generalized in Chapter IV to systems of non-linear equations
in an n-dimensional arithmetic space, and thus represent an important instance of
these general methods. Particular importance has been attached to the derivation
and formulation of @ priori and a posteriori error-estimates in approximation
methods for the calculation of zeros.

1. Calculation of Functions

In this section we consider some methods for defining special functions and cal-
culating them numerically. Polynomials in a real or complex variable have particu-
larly favourable properties for numerical purposes; the Horner method is available
as a simple algorithm for calculating the values of the function and its derivatives.
Consequently, polynomials form an important auxiliary means of approximating
functions; for instance, in the form of the initial part of a power series or of an
asymptotic expansion, as a Chebyshev approximation, an interpolation polynomial,
or a smoothing parabola. The great handbook of mathematical functions by
Abramowitz and Stegun lists a large number of special functions which can be
expanded in power series, asymptotic series, and continued fractions. By taking
the initial part (of suitable length) of these expansions one can then approximate
the functions and calculate their approximate values. Nevertheless in many cases
one today makes use of best or almost best approximations in the Chebyshev
sense in calculating special functions. In the handbook just mentioned these are
listed under “polynomial approximations” and “‘rational approximations”.
Chebyshev approximations are generally most suitable for calculating functions
because the error of these approximations is uniformly minimal in the interval
considered.



2 1. Calculation of Functions

References: Abramowitz and Stegun, Hart ez al

1.1. Polynomials

For calculating the function-values of polynomials and their derivatives, the
algorithm known as Horner’s method is available. By an algorithm we mean a
recipe which lays down and prescribes each step in some calculation. In the numeri-
cal calculation of function-values of a polynomial, for instance, because of round-
ing errors the order in which individual steps of the calculation are carried out
is by no means a matter of indifference. The Horner method is also used for sepa-
rating out linear factors from a polynomial and for calculating the coefficients in
the Taylor expansion of a polynomial at a given point. We use K to denote either
the field R of real numbers or the field C of complex numbers. Let p,, be a poly-
nomial of the nth degree, of the form

pn(x) = ag+ax+ ... +a,x", xeKk,

with coefficients ay, . . . ,a, € K.
To calculate the function-value p,(x,) at a given point xo € K we start from the
representation

Pn(x0) = @o+ xo(@; + xo(. . . +xo0(@n_2 + Xo(@n_y + x0a,)) - . .)).
So if the numbers ag, . . . , @), are determined according to the rule
(l) a'nzan’ a;zzak+x0a;z+ls k=n—l,...,l,0,

then the required function-value is obtained in the form p,(x,) = ao.
The new coefficients ag, . . . , @, define a polynomial of degree n — 1 by the
equation

(2) Ppa(x) = di+tdyx+.. . +ax"!, xeK
As may be verified immediately, this polynomial satisfies the relation
(3) Pn(x) = rot+ (x —x0)Pp1(x), x<K, Pn(x0) = ao = ro

Accordingly, p,_, arises when the linear factor x — x, is removed from p,, and ry is
the remainder when p,, is divided by x — x,. The relation (3) also yields the repre-
sentation

Pn(x) —Pn(x0) _

————m————— = P i Fx9, x<K,
@ T N

for the difference quotient, and hence, for x = x,, the representation

dpn
dx

(5) (x0) = Pn-1(x0)

To calculate p,,_; (xo) the method just described is again applied to determine
the coefficients ap, k = 1, . .., n, and the polynomial p,,_, with the property
Pn_1(X0) = dy = 1y, Ppoa(x) = rit (X —X0)Pnoa(x), qx e K.

By continuing to take out linear factors (x — xo) we obtain generally a finite



1.1. Polynomials

sequence of polynomials p,,, pn_1, Pn-2, . - . » Do With the property
6) pPuoj(x) =r+(x—x0)pPn_ja(x), xK, j=0,1,...,n—1,
and po = r,,
and so we have the representation
Pu(x) = ro+ri(x—x0)+ ... +r,(x—x0)", xek.

This is the Taylor expansion of the given function p,, at the point x,. Hence we
have for the derivatives of p,,

1d’p,
i = j!dx?

(x0), / =0,....n

If we let a},”’ denote the coefficients of the polynomial p,,_; in the form
Pn-j(x) = a}” +a}ﬁx +...+a¥’x"7 xeK, j=0,1,...,n,

then the general rule for calculating these coefficients reads:

() a0 = P, df* = af+xalli, k= =1,
forj=0,...,norn—1,and the following relation holds:

1 djpn G+1)
®) 1 = pn-jlx0) = i (ko) = aF’*V, jF=10,...,n.

The coefficients ¥/’ form the general Horner scheme with ¢t = a,, k=0, . ..
in the form

& a2 ... &® &9 o
1 1 1 1

a® o ... &8P a4
2 2 2

ad® & ... &2 n

afzn) Tn_y

rn

In order to illustrate the method of working of the Horner scheme, we give
finally the scheme of coefficients af’” for the polynomial p(x) = x".

3



4 1. Calculation of Functions

Example 1 0 0 s 0 0 0
1 Xo X2 .. x§F?  xi! x%
1 2% 3x¢ ... (n—Dx§? nxd?
—1

1 3x, 6x3 n(nz—)x(,'"2

—1
1 (n—1)x, ux%

2
1 nxgo
1

1.2. Infinite Series

Convergent series can be approximated by their partial sums. The corresponding
error-estimates obtained from convergence criteria should also be given. In the
Leibniz criterion for alternating series, as is well-known, the error is given by the
first term neglected of the series. But with ratio tests, too, we can easily give a
bound for the remainder term by means of the first term neglected of the series.

Let ag, a,, a5, . . . be an infinite sequence of real or complex numbers. Then the
corresponding infinite series
(1) atat+a+...= kzoak
converges if the sequence of partial sums s,, of the series converges to a number s,
and hence the corresponding remainder terms r,, form a null-sequence,

n oo
Q) sp,=2ap>s=r,=5—5,= 2 a>0 (>,
k=0 k=n+1

1.2.1. Error Estimate from the Leibniz Criterion. The Leibniz criterion indicates
the convergence of alternating series of real terms @y, @, a,, . . . whose absolute
values form a monotone null-sequence

B) a1 <0, |ap,I<l|apl, la,|>0 (k—>).

Since questions of convergence do not arise for series of finitely many terms,
the Leibniz criterion can be stated as follows.

(4) A real infinite series (1) the terms of which alternate from some index N + 1
onwards and are such that their absolute values form a monotone null-sequence will
converge to a number s; an estimate for the error is given by
lrpl = ls—spl =1 2 apl<|apsl, n=N.
k=n+1

Proof. We consider first the case of an alternating series. Without loss of generality
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we may assume that ap=|aol|,a;=—1|a;l,a2=1|az |, ... . Under the above
hypothesis the partial sums then satisfy the relation

$2j41S82j43 82542825, 7 =0,1,2,...,
and
S2j — 8241 = lazjur | >0 (j—> o).

The two sub-sequences of partial sums s,}, §2;4; (=0, 1,2, .. .) are therefore
monotone convergent to the same limit s, and so the series (1) also converges to s.
We also have the two inequalities

d s =aotataytazt... = (lagl—lail) + (lazl —lasl) +...20
an
s = a0+al+02+a3+... = ao_(|a1|_|a2|)_...<|a0|,

and hence the estimate | s|<|aq|.
In the general case with an index N, for each n = N, the sequence @1, @4z, - - -
is alternating and, in absolute value, isa monotone null-sequence. So the series s =

2  ay, converges and satisfies the estimate | s'| <|@p4q |-
k=n+1

Hence, finally, the given series (1) converges, and the remainder of the series
r, = s’ satisfies the stated inequality. O

Example. The Bessel function J, has the series expansion (see Abramowitz and
Stegun, No. 9)

& CDM
©) Jux) _,z;, KIT(k+1+0)

For real x € R and real indices » > 0, this is an alternating series. For k =0, 1, 2,
...with k + 1> |x|/2, the absolute values of the terms a;, of the series form a
monotone null-sequence, since

2
1 X
e T e [ < X
| @es | (k+1)(k+1+v)(2) k| <laxl

The above theorem therefore permits the representation

‘n- . k+v
(6) -’v(x) = Zl (_M_

+
& KT+ 140

with the error estimate

2n+v
7 | I< - al <n+1
14 L ayrreeemereea——— 3 s .
@) OIS e 175, 2 2
For example, forv =0, 1, 2, . . .and n = 7, we obtain the estimate
B) lre(x)I<4. 1078, |x|<2. O

1.2.2. Error-Estimate from a Ratio-test. For an infinite series of the form (1) with
real or complex terms we can also give an easily calculable error-estimate derived
from the ratio-test.



