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PREFACE

The Fifteenth Conference on Stochastic Processes and Their Appli-
e ——— —— BT S
catlons was held in Nagoya, Japan, for the period July 2- 6 1985.

e

This volume contains the invited papers presented at this conference.
- 2 The conference was attended by 360 scientists, from all over the

? world, and 110 among them were participants from overseas, whose attend-

'e ls%greatly appreciated.

In dddltlon to the invited paper sessions, there were contributed

~paper sessions on the following topics.

Gaussian processes and fields

i Branching, population and biological models

B : Stochastic methods in physics

: Stochastic differential equations
Probability distributions and limit theorems
Stable processes and, measures
Random walks and i.i.d. random variables
Filtering, control and optimization
Statistical inference
. Diffusion processes
Y Markov processes

o Storage and reliability

Ergodic theorems

Martingales and processes with independent increments

Point processes and applications

Stochastic processee in random media

-iThe organizers regret that the papers in these sessions could not be

: included in this volume.
; We should like to express sincere thanks to Professors Ken-iti Sato

‘and.Tadahlsa Funaki who have helped us in editing this volume.

September 15, 1985

Kiyosi Itd

Takeyuki Hida
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established that by choosing suitable versions of (Et(x)':t 2 0} for
each x € M we obtain a random process {Et :t 2 0} with values in

Diff (M), the group of smooth diffeomorphisms of M with the topology of
uniform C' convergence for all r > 0. The process {Et st 2 0}:is

_called a stochastic flow (of diffeomorphisms) . For results on the

existence of the stochastic flow of diffeomorphisms for equation (1.1)
see (6], [12], [15] or [19].

The process {£t :t > 0} has the following properties
(i) independent increments on the left (i.e. i5 .0 s t, < t, Ll
< th then ﬁt 5;1 , 1 €£i € n, are independent)
i vi-1 :
(ii) time homogeneous (i.e. if t > s the distribution of €t£;1
depends only on t-s)
(iii) continuous sample paths with probability 1 (w.p.1)

(iv) EU = T w.p. k.

_ is shown in [2] that any process {Et :t > 0} in Diff (M) satisfying
(i) - (iv) arises as the solution of an equation of the form 6 P
See also [23]. The law of the process {ét: t 2 0} is determined
uniquely by the drift Vs € ¢”(TM) and the Hilbert space H. Since H
is continuously included in C (TM) it is a reproducing kernel Hilbert
space of sections of TM and so it is determined by a positive semi-

definite reproducing kernel b. We have

‘b(x,y) = E(W, (x) & W, (y))

iglvi;x) e Vv, (y) (1.4)

€ TxM ® TyM

for x;y £i M Vo and b may be interpreted as the mean and variance of
the random vector field which is driving 4 5 9 S Notice that the
individual V., i > 1, determine the law of the flow only so far as
they contribute to the sum (1.4). It is important to distinguish
between the behaviour of the one-point motion {Et(x) :t 2 0}, which is
characterised by L, and the behaviour of the flow {Et PR e Sl The
extra information given by V, and b which is not contained in L is the
correlation between the one-point motions {gt(x) :t 20} for different

x but the same noise {wt s OO T e e

In this paper we shall be concerned with the following questions
about the stochastic flow {Et: £ .2 0}).

(1) Geometrical nature of Et' Does there exist a nice subset D

~of Diff(M) such that Et € D for all t 2 0 w.p.1? Since the stochastic

flow has continuous sample paths we can always take D equal to the
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identity component DiffI(M) of Diff(M). Of more interest is the case

~where G is a subgroup of GL(d,R) and D is the group of automorphisms

of some G-structure on M. See Kobayashi [18] for details on G- R
structures. For example D might be the group of isometries of some

Riemannian structure on M or the group of diffeomorphisms which preserve

some smooth volume element on M.

(2) Stability of solutions. For distinct x,y € M what happens

to d(it(x),it(y)) as t -» ®? (Here d denotes the metric corresponding
to some Riemannian structure on M.) This is a question about the 3

' 2-point motion {(gt(x).it(y)) :t 2 0} on M2, We obtain a similar

question, but one which involves infinitely many points, by considering

diam(gt(U)) for some neighbourhood U of x in M.

(3) Induced measures. Let P (M) denote the space of Borel prob-

ability measures on M. For p € P (M) let At pg;‘. Then {pt :t 2 0}
is a Markov process in Pm). In [22] Le Jan obtains results on the
nature of the stationary distribution for this Markov process. See
also [20]. We shall say p € P (M) is invariant under the stochastic
flow if P = P for all t 2 0 w.p.1. In this case we may take D in
question 1 to be the group of p-preserving diffeomorphisms of M. This
is a much stronger property of p than the fact that p is a stationary
measure for the one-point process; in fact p is stationary for the
one-point process if and only'if E(pt) =p-foriall t » 0, Sinpe the
one-point process is a Feller process and M is compact there exists at
least one stationary probability measure. Moreover if L is elliptic
then p is unique and the one-point process is ergodic with respect to
p. Henceforth we shall use p to denote a stationary probability

_measure on M. In general p will not be invariant under the flow and

~

we wish to describe the behaviour of Py as t » «,

We shall describe some general results in Sections 3 and 4.
Before that we consider two specific examples of stochastic flows on -
the circle; in each case we may write down an explicit solution. In
the final section we consider a family of examples of stochastic flows

. on the torus.

For results for similar questions applied to isotropic stochastic
flows in Euclidean spaces see Baxendale and Harris [5] and Le Jan [21)=

2. Two stochastic flows on the circle

Before proceeding with general results we consider the following




examples of stochastic flows. ‘In each case M = Sl = R/2mZ with the
Riemannian structure inherited from the standard inner product on R.
We write 6 for elements of both R and S! and observe that equations

(2.1) and (2.3) below have period 2m.

Example 1

dEt(e) 2 dwt. (2.1)

The solution is given by

£ (8) = 8+ W_ (mod 2m), 4

t
that is, Et is rotation of s! through the angle W .

Example 2
dE, (0) = sin(£ (8)) odW] + cos(£_(6)) odwf_. (2.3)

This is the equation for the gradient stochastic flow obtained by
taking the standard embedding of gl as' the unit circle in RZ. ’See
Carverhill, Chappell and Elworthy [10] (which also contains a computer
simulation of the 10-point motion due to P. Townsend and D. Williams).
The solution is given by

tmﬂ%ﬁ)+atwan%e)-bg

1
tan(E, _(8)) = ; (2.4)
27t & 1 1,2
1 at(tan(ze)-bt)tan(zUt)
where
& gl
at = exp( Ut +2t) (2.5)
h =
2 ~oh2 :
DA J a_ dug (2.6)

0

and {U; :t 20}, i = 1,2, are Brownian motions given by

aw
:Rt
dqt aw

[
N -

where Rt denotes rotation in RZ through the angle Et(n).

In both examples the one-point motion has generator given by

2

L = % Jl;, so that the one-point motion is Brownian motion on si,

de
The stationary probability measure p is normalised Lebesgue measure.
In example 1 the stochastic flow consists of rotations, whereas in
example 2 the stochastic flow lies in a 3-dimensional Lie subgroup
(isomorphic to SL(2,R)) of Diff(Sl). In example 1 distances between

points are preserved and the measure p is invariant under the flow.



_In example 2 the fact that a, s as t » » w.p.1 implies that distances
and the measure p become more and more distorted by Et as 't = . ®, More
precisely bt converges to some random value b, say, as t o+ © w.p-1,
and if 61 and 92 are distinct points of s! with tan(%ei) b il g
then

lim —-log(i(Et(G )& (8, )) lim -log (——)

tooo oo

1

tof e

Also the measure p, becomes more and more concentrated but does not
converge as t - <. Instead it looks more and more like a unit mass
attached to a Brownién particle. In fact for any 6 € S1 such that
tan(—e) # b, then R 6(€t(0)) - 0 weakly as t » = (where §(8) denotes
- the unit mass concentrated at 0). For a generalisation of example 2
to gradient stochastic flows on spheres see el

33 The support theorem for stochastic flows

Let C denote the‘space of continuous functions f : [0,®) - Diff (M)
such that £(0) = I, with the compact-open topology. By properties
(iii) and (iv) of stochastic flows, £ = {&t :t 2 0} is a C-valued
random variable. In this section we study v, the distribution of E.
The following theorem is due to Ikeda and Watanabe [16].

Theorem 3.1. Let 1L denote the space of piecewise constant functions
us: [0,v) - H. Let Eu € C denote the solution of

L2 = (Vg +ule)) ()

u
£y

Then the support of v is the closure in C of {e" 10 e hd,

X) = X.

Theorem 3.1 can sometimes provide an answer to question 1. Let
LA (H) denote the closed Lie subalgebra of Cm(TM) generated by H (or,
equivalently, generated by {Vi s H 2= 1) . Notice that LA(H) depends
only on H as a set and not on its inner-product. Theorem 3.1 remains
valid if we replace H by LA(H) in the definition of . It follows
that if LA(H) = c®(TM) then the support of v is C itself, and so the
only closed subset D of Diff (M) satisfying £, € D for all t 2 0 w.p.1
is D = DiffI(M)f On the other hand if the (deterministic) flows
along the individual vector fields Vi i > 0, all lie in some closed
subgroup D of Diff (M) then Et € D for all t 2 0 w.p.1. The stochastic
flows studied in the previous section provide examples of this phenom-—




enon. For an example where D -is the group of conformal diffeomorphisms
of a sphere see [3]. In general, even if the noise in (1.1) is only
finite-dimensional the resulting stochastic flow is infinite-dimensional.

When considering the behaviour of Et as t » » the support theorem

-is often of little use. This is because the topology on C is that of

uniform convergence on compact subsets of [0,«) and so, for example,

i=the set

{f € C:a(f(t)(x),£(t)(y)) = 0 as t - =},

for fixed x and y in M, is not closed in C. The failure of the

support of v to provide information about v itself is shown up in the
following result.

Theorem 3.2. Let v and v' denote the distributions in C of the
stochastic flows corresponding to pairs (VO,H) and (Vé,H').
(i) If LA(H) = LA(H') and Vé--v0 € LA(H) then v and v' have the
same support.
(ii) Either v and v' are singular or v = 87 5. The latter case
occurs if and only if V0 = Vé énq H = H' (as Hilbert spaces).

Proof. (i) This follows directly from Theorem 3.1.

$11) For T > 0.let Co= {£} : £ € C} and let v, denote the
T [0,T]

T
distribution of {Et: 0 €t T} in Cop- Consider the isomorphism of C
with.(CT)°° given by

£ (t) = f£(t+nT)(£(nT))"Y, =n >0, t € [0,T], £€C.

Under this isomorphism v corresponds to the infinite product of copies

of V- The first part of (ii) now follows from a theorem of Kakutani

[17] on infinite product measures. The second part is contained in
[2]. o
4. Lyapunov exponents for stochastic flows

Consider the derivative flow {DEt: t 2 0} on the tangent bundle
TM of M. For each x € M and t 2 0, Dgt(x) is a random linear mapping
from TxM to TE (x)M‘ In this section we shall consider the limiting
t

rate of growth of DEt(x) as t » » for x € M, and its effect on the
nature of the stochastic flow as t - =, If we impose a Riemannian

Y2

structure we may consider (DEt(X)*DEt(X)) :TXM > TxM, the positive

part of DEt(x). Here DEt(x)* :Tgt(x) - TxM denotes the adjoint of

DEt(x). The following theorem goes back to results of Furstehberg
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[13] on products of independent identically distributed random matrices
and Oseledec [24] on products of a stationary ergodic sequence of
matrices. It was adapted to apply to deterministic flows by Ruelle

"[25] and its present formulation for stochastic flows is due to Carver-

i 5 10 i D R

Theorem 4.1. Assume p is a stationary ergodic probability measure for
the one-point process of a stochastic flow (gt: t 2 0) defined on a
probability space (Q, F,P). For P x p-almost all (w,x) € QxM,

WRTR h as t. e (4.1)

*
(DE, (%) Dﬁt(X)) tirs %)

where A(m is a random linear map on TxM with non-random eigenvalues

+X)

e 2 e Fonnoge a0 53 (4.2)

The values Al 2 Az > SR Ad are called ‘the Lyapunov exponents
for the stochastic flow. Since M is compact, any two Riemannian
structures on M are uniformly equivalent and so the Lyapunov exponents
are independent of the choice of Riemannian structure. They af% non-
random because they depend only on the remote future of the stochastic

flow, whereas A( is in general random because the eigenspaces

w,x)
corresponding to distinct eigenvalues depend on the entire evolution
of the stochastic flow. Roughly speaking, the theorem implies that
the positive part of DEt(x) has eigenvalues growing like

Ait )\Zt }\dt
e e TR as t - o, More precisely we have:

Corollary 4.2.
(i) For p-almost all x € M and Lebesgue-almost all v € TxM‘\{O}

P{%log IDE (x)Tv)] A, as € > =} = 1. (4.3)
(ii) For p-almost all x € M
p{%;ogdet(ogt(x)) SR T e R A B S T 1 (4.4)

ﬁé comment that if the generator L for the one-point process is
elliptic then we may remove the condition on X in Corollary 4.2. It
the generator for the induced one-point process {Dgt(x)(v) :t = 0} in
M. is elliptic on U (T M \{0}) then we may.remove the condition on

yeEM

ViE T M N{0} also.

Corollary 4.2(i) provides an answer to the infinitesimal version
of question 2. Carverhill [7], following Ruelle [25], has a local
stable manifold theorem which enables us to obtain answers to guestion

2 as originally posed. We state a special case of the theorem.

Theorem 4.3. Suppose Al <0 0s 1k R s el B e xl then for P x p~almost



all (m,xi in Q@ xM there exist (measurable) r(w,x) > 0 and y(w,x) > 0
such that d(x,yi) S rlueX) wEor i =2 implies

dlE ly ) E (y,)) < ylw,x)dly,,y,)e"t (4.5)
for all t 2 0.

An immediate consequence of Theorem 4.3 is that if AI < 0 then
for p-almost all x € M and all ¢ > 0 there exists § > 0 such that

P{diam £, (B(x,8)) » 0 as t » =} > 1 = ¢ (4.6)
where B(x,6) denotes the open ball with centre x and radius (19

Let us review example 2. Let B(w) be the random point of gl
given by tan(%@(w)) = b_. ' Since the distribution of {Et :t 20} is
rotation invariant it follows that 6 (w) is uniformly distributed on gl
The set of full P x p measure on which (4.1) is valid is the set
{(w,8) : 8 # B(w)}, and Al = --%. In Theorem 4.3 we need
r(w,8) < d(e,6(w)). In (4.6) notice that diam Et(B(e,é)) - 0 as
t -+ = whenever 8(w) € S! -B(8,6), and this happens with probability
1-%. So corresponding to € > 0 we need § < 7e.

The following result provides a global version of Corollary 4.2(ii),
so long as p is closely related to the Riemannian measure m, say, on M.
Let AZ = A1+ A2+ wr oy EW i

d
Theorem 4.4. Suppose p has a positive C2 density with respect to m.
Then :
1 ) ;
dam; — T (o nlip)=i=A w.p.1
Lae B t ')

where I(pt|p) denotes the relative entropy of P with respect to p.
In particular kz £ 0, and AZ = 0 if and only if p is invariant under
the stochastic flow {gt @t 2 0k

Proof. ' See Baxendale [4], Theorem 5.2.

The highest Lyapunov exponent Al may be evaluated using a formula
due to Carverhill ([8], following the method of Has'minskii [14]1%For
linear stochastic differential equations. : We shall obtain a special
case of the formula in the next section. The formula may be general-
ised so as to obtain the sum of the k highest Lyapunov exponents for
1 < k £ d. See Baxendale [4] for details. The sum A
studied by Chappell [11].

s has been

For a recent survey article on Lyapunov exponents for stochastic
flows see Carverhill [9].



e A family of stochastic flows on the torus

’

Let M = (R/Zn?)2 = T2, the two-dimensional torus, with coordinates
X = (xl,xz) € M and Riemannian structure inherited from the standard
inner product on Rz. Consider the one-parameter family of stochastic

flows on M, parametrised by a € [0,7/2], given by

4 .
& i i
dE (%) = ] V (Ec(x)) odW, (5.1)
izl
where the vector fields are as follows

% V,(x) = sin xl(cos o 3 + sin a—é—ﬂ
1 15 2
X 9x
V,(x) = cos xl(cos a + sin u—é—)
2 2
9X 9X
: 2 = 3
V,(x) = sin x (-sina + Coso—s)
3 2
oOX 9x
2 3 9 5
V,(x) = cos x" (-sina + cosa—).
4 . 2
7 IxX ax

*

For each o the infinitesimal generator for the one-point motion
is one half of the Laplace-Beltrami operator on M, so that the one-
point motion is Brownian motion on M. The stationary probability
measure p for the one-point motion is normalized Lebesgue measure.
It is easily checked by calculating the covariance b(x,y) that different
values of a € [0,n/2] give rise to stochastic flows with different
distributions.

We may simulate the k-point motion {(Et(xl),...,it(xk)) ot 20}
in Mk for any k 2 1, (Xl""’xk) € Mk and o using the scheme
)

4
; - (n).
gnh+h(xr) 3 gnh(xr) % /hizlxi. vi(gnh(xr))
for 1 £ r £ k and n 2 0, where {X;n) :1<1i< 4, n>2 0} are independent
N(0,1) random variables. Figures 1 to 4 show the result of simulating

with h = 0:01 the 225-point motion started from the regular 15 x 15

(Zx=T)n (&gt mg - e N

15 5 15 ) U B l,jl\ 157

We show [0,27] x [0,27] squares whose edges are to be identified to

lattice J in M given by J = {(

give M. The pictures correspond to different values of a but they
are all at the same time t ='0-5 and are all genetrated by the same
sequence of Xin). In order to appreciate better the distortion of M

caused by Et we have added in figures 2, 3 and 4 the straight line
segments joining the current positions of nearest neighbour pairs in

the original lattice J.
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. . . e e e S P N
e SRR R e N
. 5 » el b St bt i Gl N
I e g W\
B \\Naws
]
Figure 1 : a = 0, t = 05 Figure:2.: o ="m/6, t =05
-
Figure 3 : a = 7/3, t = 05 . Figure 4 : a = n/2, t = 0+5
Consider the two extreme values of a. If o = 0 then we obtain

B Yie, (EhR) L E2(%0))
where {Eé :t 2> 0} and {Ei :t 2 0} are independent copies of the stoch-
astic flow on s! studied in example 2. This decomposition shows up
in Figure 1 in the way in which horizontal lines are mapped to horizon-
tal lines and vertical lines are mapped to vertical lines. The
stochastic flow takes values in a 6-dimensional Lie subgroup (isomorphic
to SL(2,R) xSL(2,R)) of Diff (M). This is the only value of a for

which Et takes values almost-surely in a finite-dimensional subgroup
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~of Diff(M) because in all other cases the Lie algebra generated by

{vl,vz,v3,v4} is infinite-dimensional. From the calculations in
example 2 we see that for x,y € M with x # y

1 3
3 et !

P{lim % log d(E, (%) ,E¢ (¥))

e

and that for x € M

P{weak-1lim (pt-é(it(x))) 0} = 1.

t-»00
If o = m/2 then we obtain the stochastic flow studied by Ikeda and
Watanabe in [16]. In this case div V, = 0 for 1 € i € 4 so that p is
invariant under the stochastic flow. See [16] for an exact character-
isation of the support of the stochastic flow. For x # y the two-
point process {(Et(X)'Et(y)) :t > 0} on M2\D (where D denotes the
diagonal {(u,v) € M2 :u = v}) has finite stationary probability measure
pXpe Hence the process {(Et(x),gt(y)) :t 2 0} on Mz‘\D is recurrent
on Mz‘\D and so

CB{d(E (%)), (y)) » 0 as t > =} = 0.

From the above discgssion we have A1 = Az = —-% when o = 0, and
x1+ Az = 0 (so that Al m=K, > 0) when a = m/2. We proceed to celculate
Al and A, for general a. We shall write ki(a) to denote the dependence
of Ai on 0. In view of Theorems 4.3 and 4.4 we wish to discover when

Al(a) < 0 and when Al(a)+ Az(a) = 0.

We may treat (5.1) as an equation in RZ. Converting to It6 form

we obtain

4 +
) @ '
e, (x). = izlvi(gt(x))c:twt

since in this case the It8& correction term is identically zero. DI E=
erentiating with respect to X and writing DEt(x) = At’ we obtain
4 \
s o
any = ileVi(Et(x))Atdwt. (5.2)

Calculating DVi(y) for 1 € i € 4 and substituting in (5.2) we obtain

cosa O : 0 -sinal 4 3
poaa = Lina O}Atdut + [O ik OJAtht (5.3)
where | :
au! = (cos Eé(x))dwé - (sin gé(x))dwi S
av? = (cos £2(x))aw] - (sin £2 (x))awy

and Et(x) = (Eé(#),&i(x)). ~ From (5.4) we see by Lévy's theorem that
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: 1 2 1 2 S ¢
if U, =qU,27-0+then {Ut 2t 2.0} and {Ut :t 2 0} are Brownian motion
processes. It follows from (5.3) that for this family of examples
the law of {DEt(x) :t 2 0} for fixed x € M is independent of x. Pix
3 2 i = = ‘
vinE TxM = R® with v # 0 and let Vi Dgt(x)(v) = Atv. Then
cosa 0 : [O -sina 2 :
dv, = Vedlls '+ v dul. (5.5)
’ sina 0 t,t L0 cosa F It
Write v, = r (cos 6, , sin 6,) - Then by It6's lemma we obtain from
(5.5)
Rl . & 1 : e 2
det = -cos et51n(et a)dUt + sin etcos(et a)dUt
£k %(sin(zet -a)cos(2et—o¢) -sinacos a) dt
and

0 3 1 : s = 2
d(log rt) = cos etcos(et u)dUt + sin BtSln(et a)dUt - qa(et)dt
where
Y D A8
qa(e) = 3{—1 + sin“a + sin“(206-a)}. (5.6)

Therefore {et: t > 0} is a diffusion on S! with infinitesimal generator
given by

d2

L = (sin2a+sin2(29—a)) 2+-?_;(sin(ze—m)cos(ze—m)-sinmcoscx)die
]

1

b'n—ﬂ

and so for 0 < a € % it has a.unique stationary probability measure Moo
say, with smooth positive density 9yr Say, with respect to Lebesgue
measure. Also

T
log r, = log o + Mt + Joqa(es)ds

d

where Mt is a martingale with 3€<M>t Sel, Therefore
1 1 .
lim +-logr, = lim = J . (8 )ds’. wapil
o E B et e
= { 1qa(e)dua(e) Wepiils (557)
S ; :
Since (5.7) is valid for all x € M and v € TXM‘\{O} we have
Xl(a) = J qa(e)d“a(e)' (5.8)
1 ;
S
Formula (5.8) is a special case of Carverhill's formula. In general
the integral is taken over SM, the unit sphere bundle of M. In our

case SM = Mxs! and by the remark after (5.3) and (5.4) it turns out
that both the integrand and the density of the measure depend only
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upon the second factor in the product M x gh

When o = % then gu(e) = k(sinzu-bsinz(Ze--a))_l/2 where k is

chosen to ensure total mass 1. Then

A3 = - 3 B@ Y kTR
= an’(rgn*
~ 0228
where K and E denote complete elliptic integrals of the first and
second kinds (see Whittaker and Watson [26]). For . 0: <ig < % we do
not have such a nice formula for ga(e). Notice that for 0 < a € %

both qa(e) and ga(e), and hence also Al(a), depend analytically upon a.
However as o - 0 the generator L1 becomes singular and we need %o
investigate ga(G) in more detail in order to describe the behaviour of
Al(a) as a - 0.

Since the generator L1 is invariant under the transformation
8- 6 + % it follows that the density g, has period %. We shall

s o o :
give a formula for ga(e) for T < 6 <€ i Define
: )
£ (¢) = (sinza-rsin2¢) 1/2exp(———-£9-s——55-—-— arctan(!llé%%iﬁ—gltan¢>)
= : /(1 + sina)
(5.9)
for - % < ¢ < %. Then
20-a
% ol 2 i =4 7 -1
9,(8) =k (sin“a+sin®(26-a)) " (f (26-a)) (1 +£QJ fa(¢)d¢>
THE G
Do a.,m : i S Sypes LA
for ST € 6 < Sty where la is chosen so that ga(2 4) ga(2 +4)
and then ka is chosen to ensure total mass 1. Since
26-a n/2
L)
A <m e za fa(¢)d¢ R Tup zaJ fa(¢)d¢
-n/2 =~/ 2

i exp( T cos 3 ) < "
V(1 +sin“a)

we obtain from (5.9), (5.10)

k e—n/z ; % e317/2
o < < o
2 2 ~ G 2 2 g
V(sin“a + sin“ (26-a)) V(sin“a + sin“ (26-a))
Therefore
Letm B < @ o fcd et B
Y K(y) Y K(y)
where v = (1 + sinza)-l/z. Now as a -» 0 then /1-—Y2 ~ o and so
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—%ill— ~ 1/log(1/a) (see [25], p.521).. It follows that Al s 10,210 k
zsxég;tinuous but not differentiable at a = 0.

Returning to (5.3) we obtain by It8's lemma

d(logdetAt) = (cos a)dué + (cos a)dUi - (cosza)dt
so that

logdet A, = -cos’a. (5.11)
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Combining (5.6), (5.8) and (5.11) we have

Ai(a) = %(—cosza +(—1)1-1J sinz(ze—a)dua(e)). (5.12)
) s! ; 1 g
The table gives values of Xi(a) for o at intervals of 01 radiﬁys.
Values of I 1sinz(ze—a)dua(e) were obtained by numerical integration
S

and substituted into (5.12). We obtain Ai(a) < ETON

a Ay (@) A, (@)
0 -0+5 ~0+5
01 -0-346 -0-644
02 -0+307 -0+653
0.3 -0-268 | =-0-644
0+4 -0-226 -0+622
0-5 -0+179 -0+591
“ 046 -0-129 ~0+552
07 -0+077 -0+508
0+8 -0+024 -0°+462 :
0+9 0-029 -0:415
140 0-078 -0+370 '
1+1 04123 -0+328
12 0+161 -0+292
13 0+192 -0°263
1.4 02214 . |ii~0%243
145 0+226 -0+231
/2 0-228 -0+228

845 = 026971 radians. From (5.11) we have Al(a)+ xz(u) < 0 for

a < 0
a < %, so that o = % is the only case in which the medsure p is invariant



