| | | | | ﬁ ‘\ _1
& y
| |
S 2
-JI
B _
(: A S - -
AP =
e '
s
e :
- 200
.,,,
et e : = -
I
] 2
S
/. :
o e &
S]
=

A.P.I.C. Studies in Data Processing
No. 19

Introduction to the
Graphical Kernel System
(GKS)

F.R. A. HOPGOOD
D. A. DUCE
J. R. GALLOP
D. C. SUTCLIFFE

Computing Division, Rutherford Appleton Laboratory,
Didcot, UK

1983

ACADEMIC PRESS, INC.

Harcourt Brace Jovanovich, Publishers
London Orlando San Diego

New York Austin Montreal Sydney
Tokyo Toronto

ACADEMIC PRESS INC. (LONDON) LTD.
24/28 Oval Road
London NW1

United States Edition published by

ACADEMIC PRESS, INC.
Orlando, Florida 32887

Copyright © 1983 by
ACADEMIC PRESS INC. (LONDON) LTD.

All Rights Reserved
No part of this book may be reproduced in any form by photostat, microfilm, or any other
means, without written permission from the publishers

British Library Cataloguing in Publication Data
Introduction to the Graphical Kernel System (GKS) —
(Automatic Programming Information Centre studies
in data processing ISSN 0067-2483; 19)
1. Computer graphics
I. Hopgood, F.R. A. II. Series
001.64'43 T385

ISBN 0-12-355570-1

LCCCN 82-074141

PRINTED IN THE UNITED STATES OF AMERICA

85 86 87 88 98765

Introduction to the
Graphical Kernel System
(GKS)

18.

19.

20.

21.

22.

A.P.I.C. Studies in Data Processing
General Editors: Fraser Duncan and M. J. R. Shave

Some Commercial Autocodes. A Comparative Study
E. L. Willey, A. d’Agapeyeff, Marion Tribe, B. J. Gibbens and
Michelle Clarke

A Primer of ALGOL 60 Programming
E. W. Dijkstra

Input Language for Automatic Programming
A. P. Yershov, G. 1. Kozhukhin and U. Voloshin

Introduction to System Programming
Edited by Peter Wegner

ALGOL 60 Implementation. The Translation and Use of ALGOL 60

Programs on a Computer
B. Randell and L. J. Russell

Dictionary for Computer Languages
Hans Breuer

The Alpha Automatic Programming System
Edited by A. P. Yershov

Structured Programming
O.-J. Dahl, E. W. Dijkstra and C. A. R. Hoare

Operating Systems Techniques
Edited by C. A. R. Hoare and R. H. Perrott

ALGOL 60. Compilation and Assessment
B. A. Wichmann

Definition of Programming Languages by Interpreting Automata
Alexander Ollongren

Principles of Program Design
M. A. Jackson

Studies in Operating Systems
R. M. McKeag and R. Wilson

Software Engineering
R. J. Perrott

Computer Architecture: A Structured Approach
R. W. Doran

Logic Programming
Edited by K. L. Clark and S.-A. Tarnlund

Fortran Optimization
Michael Metcalf

Multi-microprocessor Systems
Y. Paker

Introduction to the Graphical Kernel System—GKS
F. R. A. Hopgood, D. A. Duce, J. R. Gallop and
D. C. Sutcliffe

Distributed Computing
Edited by Fred B. Chambers, David A. Duce
and Gillian P. Jones

Introduction to Logic Programming
Christopher John Hogger

Lucid, the Dataflow Programming Language
William W. Wadge and Edward A. Ashcroft

Preface

Standards in computer graphics are long overdue. Whereas de facto
standards in programming languages were common very early on (FOR-
TRAN and ALGOL 60) and international standards soon followed, there
has been a long period of graphics history where, at best, regional de
facto standards have existed and no international standards have
evolved.

Now, after some 6 years work by a highly dedicated international
group of graphics experts, this trend has been broken, with the accep-
tance of the Graphical Kernel System (GKS) for processing as a Draft
International Standard by ISO in 1982.

GKS is a graphics system which allows programs to support a wide
variety of graphics devices. It is defined independently of programming
languages.

This book aims to provide the application programmer with a good
understanding of the principles behind GKS and to serve subsequently
as an informal manual for GKS. No knowledge of GKS is assumed, but
the reader is expected to have a good understanding of programming
and at least a rudimentary knowledge of computer graphics. The book
is arranged in two main parts. The background of GKS is described and
its essential concepts are introduced in the first part whereas those
features more likely to be required by the specialist graphics program-
mer are described in the second. The chapters in Part I, which intro-
duce the essential concepts, are intended to be read in sequence. How-
ever, the chapters in Part Il may be read more or less independently of
each other, although they assume knowledge of the whole of Part L.

Examples are expressed in a dialect of FORTRAN 77 described in the
introductory section on Notation. As an aid to understanding, names
greater than 6 characters are allowed. The correspondence between
the names actually used and those in the FORTRAN 77 language binding
for GKS is given in an appendix.

Part I begins with a chapter which outlines the historical background
of graphics standards and the emergence of GKS. In Chapters 2 and 3,
output primitives of GKS and their attributes and the coordinate sys-
tems, in which they are specified, are described. Chapter 4 describes
how pictures may be divided into segments and how these segments
may be manipulated. The segment attributes are introduced. GKS is
not only concerned with graphical output but also with graphical input.
Its powerful input facilities are covered in Chapters 5 and 6. Chapter 7
concludes Part I with a description of the workstation concept which is

vi Introduction t6’'GKS

the central concept in GKS promoting program portability.

The GKS environment and the more advanced facilities are discussed
in Part Il. Chapter 8 describes the GKS environment, which includes
initialisation of GKS, the GKS data structures, the level structure and
error handling. Chapter 9 describes the control of input devices. In
Chapter 10, more advanced segmentation facilities (system wide seg-
ment storage) are considered and Chapter 11 describes the GKS
metafile, a means of transporting graphical information between
graphics installations. Chapters 12 and 13 describe the output primi-
tives not covered in Chapter 2 and say more about attribute handling.

The authors of the book were the editors of the GKS document.
Although that document is quite readable, we felt there was a need for
a more descriptive introduction to GKS illustrated with many examples.
This book is our answer to that need. We believe it will be useful to all
application programmers with an interest in computer graphics.

Finally, we would like to thank all those who have participated, in any
way, in the standardization process, which has lasted a number of
years at national and international levels. In particular, we would like
to thank Howard Watkins for his detailed comments on the book. Our
thanks must also go to wives, families and friends, who have borne with
us during both the standardization process and the writing of this
book.

Maundy Thursday 1983

In no time at all, this book needs to be reprinted. Since the book went
to press, GKS has moved forward although its story is not yet complete.
GKS 7.2 (registered as ISO/DIS 7942) is now out for letter ballot to be
approved as a Draft International Standard. The ballot closes on 23
December 1983 and allows for editorial comments (including
clarifications) to accompany positive votes. The document incorporat-
ing the necessary changes will be forwarded to become the Interna-
tional Standard.

The ISO graphics working group (see Chapter 1) met in Gananoque,
Canada in September 1983 and agreed a single language binding for
FORTRAN 77. The agreed language binding differs in one or two respects
from the one used in this book (listed in Appendix B). The differences
are outlined in the revised introductory section on Notation. It has now
been decided to publish a separate standard to cover language bindings
for GKS and although, formally, this is at an early stage, the language
binding for FORTRAN 77 is not expected to change.

All Saints’ Day 1983 David A. Duce
Julian R. Gallop

Dale C. Sutcliffe

F. Robert A. Hopgood

Notation

It is inevitable, in a technical work such as this, that a number of
abbreviations are used. The more important ones are defined as they
are introduced but, for completeness, all the abbreviations are defined
in Appendix A.

GKS, itself, is defined independently of a programming language.
Before it can be used from a particular language, a language binding
must be defined for that language. In this book, GKS is presented in
terms of a FORTRAN 77 language binding, listed in Appendix B. Since
the first printing, a revised language binding for FORTRAN 77 has been
agreed. The few differences are summarized at the end of this section.

Since a language binding must obey the conventions of a language,
all the subroutine names in the FORTRAN 77 language binding are res-
tricted to be at most six characters. To make this book more readable,
each subroutine name has been replaced by the full function name
from the GKS document (ISO/DIS 7942). Both names are listed in
Appendix B. For example, the name of the subroutine for line drawing
is GPL but in this book we use the GKS name POLYLINE.

The examples in this book are given in a dialect of FORTRAN 77. In
the interests of illustrating the subject matter, some liberties have
been taken. In particular, no restrictions are placed on the length of
identifiers and the word ‘CALL’ is omitted from CALL statements. Thus,
using the example above, in FORTRAN 77 we would use:

CALL GPL(N, X. Y)
to draw a line but here this is written as:
POLYLINE(N, X, Y)

INTEGER and REAL values are mixed indiscriminately (for example,
where a subroutine requires a REAL parameter, an INTEGER or REAL
actual parameter may be used). Parameters specifying one of a
number of options, which in PASCAL would be of enumeration type, are
written as variable names, with the assumption that the appropriate
settings have been made elsewhere. For example, the GKS function to
specify the CLIP (rather than NOCLIP) option for the clipping indicator
will be written as:

SET CLIPPING INDICATOR(CLIP)

The FORTRAN 77 language binding internationally agreed at
Gananoque in September 1983 differs from the one used in this book as

viii Introduction to GKS

follows. Some of the integer values corresponding to the enumeration
type parameters referred to above have been changed. Table 3 of
Appendix B has been updated to reflect the new values. Names have
been defined for these values and are listed in Table 4 at the end of
Appendix B. These should be made available, by means of PARAMETER
or DATA statements, for inclusion in application programs (in an imple-
mentation dependent manner). Now, to set the clipping indicator to
CLIP requires:

CALL GSCLIP(GCLIP)

The set of subroutine names has been improved resulting in the follow-
ing changes (in the order of Table 2 of Appendix B):

Book name New name Book name New name Book name New name
GAWE GWAIT GSDFsS GSDS GSWKVW GSWKVP
GFLDE GFLUSH GSMPC GSMPK GSWKW GSWKWN
GGTPC GGTPK GSPCID GSPKID GUPDRC GPREC
GINPC GINPK GSPCM GSPKM GUPDWK GUWK
GMESS GMSG GSVw GSVP GUUDRC GUREC
GRQPC GRQPK GSVWIP GSVPIP
GSCLIN GSCLIP GSw GSWN

The specification of two dimensional arrays as parameters has been
generalized, to allow a part of a two dimensional array to be passed to a
subroutine, by adding the size of the first dimension of the array to the
parameter list. For example, the subroutine for CELL ARRAY is now:

SUBROUTINE GCA(PX, PY, QX, QY. DX, DY, DIMX, CLA)

In the input INITIALISE functions that pass data records with compul-
sory parameters (those for STROKE, VALUATOR and STRING), the com-
pulsory parameters are now explicit parameters to the FORTRAN sub-
routines. For example, the subroutine for INITIALISE VALUATOR is:

SUBROUTINE GINVL(WKID, VLDNR, IVAL, PET,
XMIN, XMAX, YMIN, YMAX, LOVAL, HIVAL, IL, DREC)

Data records in GKS functions are now mapped to arrays of CHARAC-
TER*80 elements but the parameters defining the size of the arrays are
unchanged. The parameter lists of the two language binding utilities
PACK DATA RECORD and UNPACK DATA RECORD have been changed: the
function identifier has been removed, only one REAL array is provided
and there is now an error indicator to return errors. Thus, the subrou-
tine for PACK DATA RECORD is now:

SUBROUTINE GPREC(IL, 1A, RL, RA, CC, CA, IDIL, ERRIND, IDOL, DREC)

In order to simplify the parameter lists of inquiry subroutines, items
which contain four or more components (for example, window limits)
are returned in an array rather than individually. Thus, to inquire the
state of a valuator device requires:

CALL GQVLS(WS, DV, MMX, ERRIND, OPMODE, EC, INITVAL, PE,
EAREA, LOVAL, HIVAL, IMX, DREC)

Other changes affect details that are beyond the scope of this book.

Preface
Notation
Part I
1 Introduction
1.1 The Changing Scene
1.2 Seillacl
1.3 Developments
1.4 The ISO Graphics Working Group
1.5 The GKS Review
1.6 The Future
1.7 References
2 Graphical Output
2.1 Introduction
2.2 Polyline
2.3 Polyline Representation
2.4 Polymarker
2.5 Fill Area
2.6 The Duck
2.7 Text
2.7.1 Text Attributes
2.7.2 Text Representation
2.8 Primitives and Attributes
3 Coordinate Systems
3.1 Introduction
3.2 User and World Coordinates
3.3 Normalized Device Coordinates
3.4 Window to Viewport Transformation
3.5 Multiple Normalization Transformations
3.6 Graphical Annotation
3.7 Clipping
3.8 Normalization Transformation 0
4 Segments and their Attributes
4.1 Introduction
4.2 Creating and Deleting Segments
4.3 Segment Attributes

Contents

4.3.1 Segment Transformations
4.3.2 Segment Transformation and Clipping

vii

CONNHWNON -

OO NN D DL WDWWWWWN NN -
OB PR B, ~,ON0OW— OOAXNPAPNDNIITWWNIOLNO

X Introduction to GKS

4.3.3 Segment Visibility 63

4.3.4 Segment Highlighting 164

4.3.5 Segment Priority 64

4.4 Renaming Segments 66

9 Graphical Input Devices 67

5.1 Introduction 67

5.2 REQUEST Mode 68

5.3 LOCATOR 69

5.3.1 = Several Viewports 70

5.3.2 Overlapping Viewports 71

5.4 PICK 75

5.4.1 Pick Identifier 76

5.4.2 Segment Detectability 78

5.5 CHOICE 78

5.6 VALUATOR 79

5.7 STRING 80

5.8 STROKE 81

6 Styles of Interaction 83

6.1 Interaction Modes 83

6.2 Mode Setting 84

6.3 REQUEST Mode 84

6.4 Status 86

6.5 SAMPLE Mode 87

6.6 EVENT Mode 88

6.7 Mixed Modes 91

7 Workstations 95

7.1 Introduction 95

7.2 Workstations 97

7.3 Workstation Selection 98

7.4 Workstation Transformations 101

7.5 Polyline Representation 103

7.6 Colour Table 106

7.7 Polymarker Representation 106

7.8 Fill Area Representation 107

7.9 Text Representation 109

7.10 Segment Storage on Workstation 112

7.11 Deferring Picture Changes 114

7.12 Input Devices 115
Part II

8 GKS Environment 119

8.1 Initialisation 119

' 8.2 Operating States 120

8.3 GKS State Lists 121

8.4 Inquiry Functions 121

8.5 Error Handling 122

8.6 Levels 124

9 Control of Input Devices 125

9.1 Introduction 125

9.2 An Interaction in GKS 125

Contents xi

9.3 Initialising an Input Device 126

9.3.1 The Initial Value 126

9.3.2 Prompt and Echo Type 128

9.3.3 Echo Area 130

9.3.4 Input Data Record 131

9.3.5 Portability of the INITIALISE Functions 132

9.4 Further Control of the Input Queue 133

9.4.1 Simultaneous Events 133

9.4.2 Input Queue Overflow 134

10 Segment Storage 137

10.1 Introduction 137

10.2 Workstation Independent Segment Storage 137

10.3 WISS Functions 138

11 Metafiles 145

11.1 Introduction 145

11.2 Metafile Output 145

11.3 Metafile Input 146

12 Further Output 149

12.1 Introduction 149

12.2 Cell Array 149

12.3 Drawing 151

12.4 ESCAPE 152

13 Individual Attributes 153

13.1 Introduction 153

13.2 Unbundled Attributes 154

13.3 Switching Modes 155
Appendices

A Abbreviations 157

B Language Binding 159

Index 193

1 Introduction

The tiny Dutch village of Steensel was the setting for the announcement
in June 1982 that the Graphical Kernel System (GKS) would be adopted
by the International Organizaton for Standardization (ISO) as a Draft
International Standard. Why has it taken until 1982 for a Draft Inter-
national Standard for computer graphics to emerge? After all, de facto
standards in programming languages have existed for some twenty
years and international standards soon followed. At first sight it might
be thought that this was due to the relative infancy of computer graph-
ics, but the origins of computer graphics can be traced back almost to
the advent of digital computers.

On the MIT Whirlwind, dual 16 inch displays were available as early as
1951; plotters were in use by 1953 and at least one high speed
microfilm recorder was available in 1958. Input devices emerged later,
yet lightpens can be traced back to 1958 and the RAND tablet made its
debut in 1964. Colour displays appeared in 1962 and by 1965 most of
the hardware facilities which we now take for granted had appeared.

However, despite the existence of the technology, the number of
display systems installed worldwide by 1964 is believed to be only about
100. Predictably these came from a number of different manufactur-
ers and different graphics packages were written to capitalize on the
features of each. There is a parallel here with the early history of pro-
gramming languages. In that field, however, the availability of FORTRAN
on a widely marketed range of IBM machines led to the emergence of a
de facto standard.

Some standard approaches began to appear in computer graphics,
accepted techniques in the use of stand-alone and satellite refresh
display systems were emerging in the late 1960’s and it is possible that
had developments continued in this manner, a standard would have
emerged. Likewise, patterns were apparent in the use of plotters and
the GINO and GHOST packages began to be more widely used in the UK
in the early 1970’s.

2 Introduction to GKS

1.1 THE CHANGING SCENE

Until the late 1960’s, interactive graphics required an expensive refresh
display and dedicated host computer. A total cost of $400,000 was not
uncommon and thus such systems were only available to a few.

The advent of timesharing systems at about the same time that the
storage tube display emerged (at a fraction of the cost, say $4,000
against $80,000 for a refresh display) had a dramatic impact. Interac-
tive graphics was now possible for a large number of people. The
storage tube did not allow changes to be made to the picture without
completely redrawing it (which was unattractive because of the low
bandwidth typically available to the mainframe) but at the same time
allowed a large amount of information to be displayed flicker free.
Consequently, users developed new and different techniques for graph-
ies with this type of display.

The changes did not stop there. In recent years, the cost of raster
displays has plummetted and so low cost raster displays have appeared
as competitors to the storage tube. These displays, like storage tubes,
do not flicker when storing a large amount of information but in addi-
tion provide selective erasure, and other attractive features such as
colour and area fill.

One might ask whether these changes will continue and whether
there will ever be a time for standardization in computer graphics. The
cautious prophet would argue that such rapid changes in both
hardware and patterns of usage are unlikely to be repeated in the near
future. There are now extensive investments in software (and
hardware) mitigating against rapid change. We are, though, seeing the
advent of high powered, low cost, single user systems, which is ironic
when one recalls that it all started with dedicated systems! New input
devices (for example, voice) are also on the horizon. As more and more
graphics devices contain embedded microprocessors, more facilities
are being put into hardware. It is possible, though obviously undesir-
able, for widely differing facilities to be put into different devices. Stan-
dards will provide guidance on what facilities should be performed in
devices and will help to guard against this unproductive diversity.

1.2 SEILLAC 1

In August 1974, at an IFIP WG5.2 meeting in Malmo, Sweden, Richard
Guedj (France) was asked to initiate an active programme directed
towards establishing standards for computer graphics. At a meeting in
Bellinglise, it was agreed to organize what later turned out to be a semi-
nal event in computer graphics standardization, the Seillac I workshop
at Chateau de Seillac in the Loire Valley, France. Held in May 1976, the
workshop was attended by a number of experts from the computer
graphics field (Bob Hopgood was one of the UK delegates) and aimed to
reveal the underlying concepts of computer graphics which earlier dis-
cussions had shown to be ill-understood.

Topics studied at Seillac ranged over the reasons for standardization
as well as the scope and requirements of a standard. There was agree-
ment that both output and input should be included. Standardization

1 Introduction 3

of the former was considered easy. However, as subsequent events
showed, even the standardization of the ‘easy’ can generate much
debate!

The requirements for a standard received much attention. To agree
that the standard should serve the areas of, for example, cartography,
schematics, engineering drawing and animation was easy, but it was
more difficult to decide whether image processing and high quality
typesetting should be included. A standard should be in line with
current practice and should answer the needs of the user community.
It should not be in conflict with other standards in, say, character sets,
and programming languages. A standard is only likely to gain accep-
tance if its design reflects a high level of expertise.

The graphics system must be at the right level. It should not include
features specific to single applications, but at the same time must not
be so low as to be device dependent. By this time, it was generally
agreed that any standard would specify a set of virtual input and out-
put functions which would be realized in terms of the functions of
actual devices.

One of the major debates revolved around both the concept of
current position and also its behaviour with respect to transforma-
tions. One of the problems was that existing packages did not distin-
guish between transformations for viewing the picture and those used
for constructing the picture out of smaller items (referred to as model-
ling). Seillac I resolved that there should be a clear distinction between
these two types of transformation and that an initial core, or kernel,
graphics system should be designed which would only use transforma-
tions for viewing a previously constructed picture.

Originally there had been no intention to publish the proceedings of
Seillac I, but at the request of IFIP, the working papers were edited
some two years later and subsequently published [1]. The Seillac I
volume is, therefore, not a polished document, but is invaluable in
revealing the seeds from which future activities and ideas grew.

1.3 DEVELOPMENTS

The graphics experts at Seillac I included representatives of the USA
and West Germany. Some of those from the USA were members of the
Graphic Standards Planning Committee (GSPC), formed two years ear-
lier under the auspices of the ACM Special Interest Group on Computer
Graphics (SIGGRAPH). Previously, progress had been slow but Seillac I
generated enthusiasm which had led GSPC to work towards the
specification of a core graphics system to fulfill one of the Seillac goals.
After a large amount of work by GSPC, a first public draft of a core
graphics system (often referred to as the Core) was published in 1977
[2]. A whole issue of ACM Computing Surveys in 1978 [3] was devoted
to describing the GSPC Core, the major issues that had to be resolved,
and examples of use of the GSPC Core. A further version of the Core
was published in 1979 [4] which included some raster extensions.
Whilst raster graphics had been dismissed in the early version, as being
different from vector graphics and only available to a few, the dramatic
drop in cost meant that raster graphics had to be considered in the

4 Introduction to GKS

1979 proposal. The Core is a full 3D graphics system and a number of
implementations have been produced in the USA.

Inspired by Seillac I, members of the West German standards organi-
zation (DIN) had also been active in defining a core graphics system.
The most obvious difference between the German Graphical Kernel Sys-
tem (GKS) and the GSPC Core was that the former was only a 2D sys-
tem, and, consequently, was significantly smaller.

Meanwhile, a proposal had been made in 1976 to ISO by the Stan-
dards Committee of the British Computer Society that the British
GINO-F graphics package should become an international standard. At
the time there was not a specific working group to deal with computer
graphics, and so the programming language subcommittee
ISO/TC97/SC5, within whose remit computer graphics lay, organized a
working party in London in February 1977. The meeting resolved that
no existing graphics package would be a suitable candidate for a graph-
ics standard. It also recommended that a working group of SC5 should
be established to deal with standardization of computer graphics and
that the specification of a core graphics system should be an early tar-
get.

What was intended to be the first meeting of the new working group
(ISO/TC97/SC5/WG2 - Graphics) was held in Toronto in August 1977.
However, a procedural point actually prevented it being a formal meet-
ing. Whilst the focal point of the discussion was the GSPC Core report
of 1977, it became clear that other core systems were under develop-
ment. In particular, the graphics working group of DIN (UA5.9), chaired
by Jose Encarnacao, were working on the specification of a core graph-
ics system to become a German Standard. The meeting resolved that
the Germans and Americans should work towards a common
specification of a core graphics system.

1.4 THE ISO GRAPHICS WORKING GROUP

The first formal meeting of WG2 (the graphics working group) was held
in Bologna in September 1978. A report of GSPC activities was received
and the DIN group reported on GKS, detailing timescales for a DIN stan-
dard to be approved in 1981. Norway indicated their intention to pro-
pose IDIGS as a Norwegian standard; IDIGS was to be a successor to
GPGS, a graphics system in widespread use in Norway and the Nether-
lands. In order that a single standard proposal might be possible, an
Editorial Board was set up to compare the various proposals and
recommend changes so that the three proposals might converge or at
least be compatible.

The Editorial Board, chaired by Paul ten Hagen (WG2 convenor) and
Bob Hopgood, met in Amsterdam in February 1979 and was presented
with GKS Version 3 (a document of 46 pages) and the 1977 GSPC Core
report (a document of 117 pages), whilst the IDIGS proposal was not
available. Two major differences between the proposals were the inclu-
sion of a current position concept in the GSPC Core (GKS did not have
one) and the pen concept for attribute handling in GKS (GSPC Core
adopted the more conventional approach of individual attribute set-
ting) [5]. The fact that GSPC Core was a 3D system and GKS was a 2D

1 Introduction 5

system did not itself cause problems since GSPC Core was also capable
of 2D graphics. The Editorial Board recommended changes to both pro-
posals to bring them closer together [6]. Both DIN and GSPC discussed
the Editorial Board’'s recommendations and a joint meeting was held in
Boulder, Colorado.

By June 1979, it was recommended that the GSPC work should be
passed to the formal American standards body, ANSI. The ANSI graphics
working group, X3H3, had its first meeting in September 1979. At its
second meeting in December of the same year, X3H3 adopted the 1979
GSPC Core as the starting point for its work.

At the following meeting of the ISO graphics working group in
Budapest in October 1979, GKS 5.0, incorporating many of the Editorial
Board recommendations, was presented. In addition, the input facili-
ties had been enhanced and the ability to use multiple output devices
simultaneously had been introduced. The 1979 GSPC Core was
presented by ANSI including a pen concept, related to that of GKS, and
enhanced text output. IDIGS was also presented.

GKS was the most technically refined of the three and the DIN
members were keen that GKS should be submitted to ISO as a standard
proposal. After discussions as to whether the working group could
evaluate two proposals at the same time, it was eventually decided that
only GKS would be put to the parent body (the programming languages
subcommittee ISO/TC97/SC5) for registration as a Work Item with the
aim of it becoming a Draft Proposal in a year.

1.5 THE GKS REVIEW

A technical meeting was arranged in Tiefenbach, Germany in June 1980
at which national bodies raised issues resulting from a thorough review
of GKS 5.2. About 300 issues were put before the meeting of which over
200 were raised by ANSI. The issues were of varying types including
clarification of the document and suggested changes to increase the
functionality or reduce the complexity. The meeting was complicated
by the fact that DIN presented GKS 6.0 just prior to the meeting. How-
ever, it had resolved a large number of issues particularly in the area
of clarification and so it was considered the most appropriate basis for
discussion. More issues were resolved during the meeting but there was
no consensus on many of the main substantive issues. Some 50 issues
remained unresolved. GKS 6.2, now 132 pages, was produced as a result
of the meeting. It was agreed that this should be the basis of the first
of two further rounds of technical discussion.

For these two rounds the issue submission and documentation pro-
cedure was formalized. Based on the ideas of GSPC and ANSI, each
issue was presented as a question, followed by a description and a set
of alternative answers. Arguments in favour of and against the alterna-
tives were listed. The complete list of unresolved issues was referred to
as an Active Issues List. An editorial round to improve the language and
to produce the document in the correct ISO format proceeded in paral-
lel. &

The British Standards Institution (BSI) delegation made its presence
felt at the technical experts’ meeting in Melbourne, Florida in January

