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Preface

This book is a practical introduction to statistical techniques called nonpara-
metric methods. Using examples, we explain assumptions and demonstrate
procedures; theory is kept to a minimum. We show how basic problems are
tackled and try to clear up common misapprehensions so as to help both
students of statistics meeting the methods for the first time and workers in
other fields faced with data needing simple but informative analysis.

An analogy between experimenters and car drivers describes our aim.-
Statistical analyses may be done by following a set of rules without
understanding their logical basis, but this has dangers. It is like driving a car
with no inkling of how the internal combustion engine, the gears, the ignition
system, the brakes actually work. Understanding the rudiments helps one get
better performance and makes drivingsafer; appropriate gear changes become
a way to reduce engine stress, prolong engine life, improve fuel economy,
minimize wear on brake linings. Knowing how to change the engine oil or
replace worn sparking plugs is not essential for a driver, but it will reduce costs.
Learning such basics will not make one a fully fledged mechanic, even less an
automotive engineer; but it all contributes to more economical and safer
driving, alerting one to the dangers of bald tyres, a leaking exhaust, worn brake
linings.

Many research workers, industrialists and businessmen carry out their own
basic statistical analyses. Professional statisticians may deplore this (as skilled
mechanics grumble about do-it-yourself car servicing). These professional
attitudes are a mixture of self-interest and genuine concern that serious
mistakes may be made by the amateur.

This book is not meant to turn those meeting data in their daily work into
professional statisticians, any more than a guide to do-it-yourself car servicing
will turn one into a trained mechanic. .

Relatively straightforward nonparametric counterparts of old established
statistical tools are dealt with in Chapters 1 to 8 with only occasional
references to sophisticated material (e.g. log-linear models in Section 8.3).

In Chapter 9 we look at some recent developments, while Chapter 10
outlines more advanced techniques; use of these will generally require
guidance from a professional statistician, but it is handy for data-producers to
know what is on offer. Using our motoring analogy, few do-it-yourself car
servicers have the skill or tools to replace the gearbox or install a new engine;
but it helps to know a little about available alternatives which may include



removal and repair, replacement by a new unit or by a reconditioned one; all
have pros and cons; so too with advanced statistical analyses.

We use real (or at least realistic) data in examples and exercises; some
specially obtained for this book, some extracted from larger published sets
with sources indicated. Reference to the source will often show that the
complete data sets have been analysed with different objectives using more
advanced techniques (parametric or nonparametric). These advanced analyses
are akin to specialist mechanical maintenance of a car.

The book is a detailed and modernized development from an earlier work of
mine, Quick Statistics (Penguin Books, 1981). Emphasis there was on the
‘quick’; here it is on the ‘statistics’. Some common ground is covered but the
change in emphasis is a logical development in the light of new attitudes to
statistical methods stimulated by availability of ever-increasing computer
power. '

To keep the book at a reasonable length for an introductory text without
making discussion of each topic too terse, I have given references to accounts
of some topics that were strong candidates for inclusion where these are well
covered at this level by other writers.

P. Sprent
December 1987

A new computing development worth mentioning is a statistical package
called STATXACT from Cytel Software Corporation, 137 Erie St.,
Cambridge, Mass., USA. It uses efficient algorithms to compute exact
permutation probabilities for some tests described in this book, comparing
these with asymptotic results. It is available for IBM-PC compatibles and
is particularly useful in situations where small sample sizes or other factors
may result in questionable validity for asymptotic tests.

P. Sprent
June 1990
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1

Introducing nonparametric
methods

1.1 BASIC STATISTICS

In most of this book we assume only a rudimentary knowledge of statistics like
that provided by a service or introductory course of 10 to 20 lectures, or by
reading a simple text like Statistics Without Tears (Rowntree, 1981).

Readers knowing no statistics may still follow this book by reading a text
like Rowntree’s in parallel; those happy with elementary mathematical
notations may prefer the more sophisticated but basic approach in Chapters 1
to 8 of Statistics for Technology (Chatfield, 1983), or one of the many other
introductory texts by both British and American authors.

In the Appendix we summarize some general statistical concepts that are
especially relevant to nonparametric methods. An ‘A’ before a section number
implies it is in the Appendix and references to the Appendix are given in
the form ‘see Section A6’, etc. Section A8 gives tables for nonparametric
procedures. The headings of these tables have an ‘A’ before their number, €.8.
Table A6 is the sixth table in Section A8.

Basic statistics courses do not always include practical applications of
nonparametric methods. In this chapter we survey some fundamentals and
give one or two illustrations. Specific techniques are discussed in later
chapters.

1.1.1 Parametric methods

Before explaining the nonparametric kind, a word about parametric inference.

Early in statistics courses one meets random variables belonging to the
family of normal distributions. Members of that family are distinguished by
different means and ‘or variances, often denoted by the Greek letters 4, o’
respectively, and called parameters.

Another well known family is that of binomial distributions, characterized by
two parameters, h, the number of observations and p, the probability of one of
two possible outcomes at each observation (often called success and failure).
The number of successes in a sequence of n independent observations (trials)
when there is probability p of success at each has a binomial distribution.

Given one or more sets of independent observations (called random
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samples) assumed to come from some distribution belonging to a named
family, we often want to infer something about the unknown parameters. The
sample mean provides an estimate of the distribution (or population) mean.
With a sample from a normal distribution the (-test (Section A4) may be used
to decide if the sample is consistent with an @ priori hypothesized population
mean p,. The related r-distribution lets us establish a confidence interval: an
interval (see Section 1.3.1) in which we are rcasonably confident the true but
unknown mean pu lies. .

For a binomial distribution, if there arc r successes in n independent
observations we call r/n a point estimate of p and we may test whether that
cstimate supports an a priori hypothesized value p,. say, or obtain a
confidence interval for the true value of p, the probability of success at each
independent observation.

In practice an assumption that observations come from a particular family
of distributions such as the normal or the binomial may be quite reasonable.

- Experience, backed to some extent by theory, suggests that, for many
measurements, inferences based on an assumption that observations are
random samples from a normal distribution, known apart from one¢ or both
parameters, may not be seriously astray even if the normality assumption is
incorrect. But this is not always true.

We somctimes want to make inferences that have nothing to do with
parameters, or we may have data in a form that makes, say, normal theory tests
inappropriate; we may not have precise measurement data, but only the rank
order of observations. For example, although it is often reasonable to assume
examination marks are approximately normally distributed, these marks may
not be published. We may only know the numbers of candidates in banded and
ordered grades designated Grade A, Grade B, Grade C, ..., or Level I, Level i
etc. In Example 1.1 we consider a situation where we know only total numbers
of items and the proportions with a certain characteristic.

Even when we have precise measurements it may be obvious that we cannot
assume a normal distribution. We may be able to say little except perhaps that
the distribution is skew, or symmetric, or has some other characteristic.

Appropriate methods of inference in these situations are described as
nonparametric, or sometimes more aptly, as distribution-free.

Many writers regard ‘distribution-free’ and ‘nonparametric’ as synonyms, a
view that ignores subtle distinctions that need not worry us here. Some tests
that arc generally classed as nonparametric or distribution-free do indeed
involve parameters and distributions and the ‘distribution-free’ or ‘nonpara-
metric’ tag simply means they can be applied to samples that come from
populations having any one of a wide class of distributions. In general, these
methods are applicable to estimation or hypothesis-testing problems when the
population distributions need only be specified in broad terms, e.g. as being
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continuous, symmetric, identical, differing only in median or mean; they need
not belong to specific familics such as the normal, uniform, exponential, etc.
Logically, the term distribution-free may then be more appropriate than
nonparametric, but the latter term is well established in popular usage.

1.1.2 Why do we need nonparametric methods?

A parametric test may depend crucially for its validity on an assumption that
we are sampling randomly from a distribution belonging to a particular
family. If there is doubt a nonparametric test that is valid under weaker
assumptions is preferable. Nonparametric methods are invaluable - indeed
they arc usually the only methods available when we have data that specify just
order or ranks or proportions and not precise observational values.

It must be stressed that weaker assumptions do not mean (as research
workers sometimes misguidedly think) that nonparametric. methods arc
assumption-free. What can be deduced depends on what assumptions can
validly be madc; an example demonstrates this.

Example 1.1

A manufacturer mass-produces an item that has a nominal weight of 1000 g
and gives a guarantee that in large batches not more than 2.5% will weigh less
than 990 g. The plant is highly automated and to check that the two machines
being used are producing goods of acceptable quality the manufacturer takes
samples of 500 at regular intervals from the production run for each machine.
These are put through a quick-operating electronically controlled checker
that rejects all items from the 500 that weigh less than 990 g. This provides the
only check that the requirement is being met that not more than 2.5%; are
below 990 g. This is a typical observation for a quality control programme.

To give reasonable protection the machines may be adjusted to produce not
more than 2.25%, underweight items (i.e. below 990g) when operating
properly. If underweight items are produced at random and the target of 2.25%,
is maintained for a large batch, then the number underweight in samples of 500
will have a binomial distribution with n =500 and p=0.0225. Standard
quality control methods use such information to indicate if a batch is
reasonably likely to meet the guarantee criterion; such test procedures are
parametric, based on the binomial distribution.

But the manufacturer may ask if other deductions can be made from the test
information. For.example, do the numbers underweight throw light on the
underlying distribution of weights? For example, can we use the observed
numbers underweight in samples of 500 from each of the two machines to test
whether the mean weights of items produced by each machine are equal, or
have a specific value? We cannot do this without further assumptions about
the distributions of weights for each machine. This is immediately apparent
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because the proportion weighing less than 990 g will be 2.25%, for an infinity of
possible distributions. For example, if the weights are normally distributed
with a mean of 1000g and a standard deviation of 5g then the long-run
proportion below 990 g can be shown to be 2.25%, (more exactly 2.28%, but for
simplicity we ignore this rounding difference). Also, if the weights were
distributed normally with a mean of 1005 g and standard deviation 7.5 g, the
proportion below 990 g is again 2.25%, as it also would be if the weights had a
uniform (rectangular) distribution over the interval (989.55, 1009.55). W
could find not only an infinity of other normal or uniform distributions, but
also gamma and other distributions which gave the same proportion below
990 g. For all of these the binomial distribution with n =500 and p=
0.0225 is relevant to the distribution of underweight items in our samples.
Tests based on the binomial distribution cannot therefore tell us on their own
if the two machines are producing items with the same mean weight. However,
if we now make an additional assumption that the output from the two
machines have identical distributions apart perhaps from a shift in median if
something has gone wrong with one, we may use our binomial-type information
to test the hypothesis that the medians are identical, against the alternative
that the two population medians differ. This is a nonparametric test, but it
would not be very efficient. If, from past experience, the manufacturer could
say that the weights always has-a normal distribution with known standard
deviation, say 6, but the mean was liable to shift if things went wrong, then
knowing the number of items with weight below 990 ¢ in a sample of 500
enables one to test a hypothesis that the mean is 1002 (the target value to give
2.25%, defectives with standard deviation 6) against the alternative that the
mean had some other value. This would be a parametric test about a
parameter g, the mean of a normal distribution with standard deviation 6.
Again, it would not be a very efficient test, but the best we could do without
more detailed information about weights of the items sampled. We say more
about hypothesis testing in Section 1.2.

Means and medians (see Section Al1.2) are common measures of location.
The most common problems with measurement data concern location. s it
reasonable to suppose a sample comes from a population with a certain
specified mean or median? Can we reasonably assert that two samples come
from populations whose means differ by at least 10 units? Given a sample,
what is an appropriate estimate of the populatxon mean or median? How good
an estimate is it? :

Some nonparametric methods require only minimal information. To test
whether we may reasonably assert that a sample might be drawn from a
distribution with pre-specified median 6, say, we need only know how many
sample values are greater than 6 and how many are less than 6. If it were
difficult or expensive to get exact observations, but easy to determine
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numbers above or below 0, this nonparametric approach may be very cost-
effective.

Example 1.2

I have on my bookshelf 114 books on statistics. I takea random sample of 12 of
these (i.e. the 12 are selected by a method that gives each of the 114 books an
equal chance of selection — see Section A3). I want to test the hypothesis that
the median number of pages per volume is 220.

T check in each of the 12 volumes selected whether or not the number of
pages exceeds 220. In 9 it does, in the remaining 3 it does not. I record this as 9
pluses ( +), or excesses over the hypothetical value, and 3 minuses (—).

A population median of 220 would imply half of the 1 14 books on my shelf
have 220 or less pages, half that or more. This follows from the definitionof a
median (Section A1.2). Thus, if the median were 220, when we select a random
sample it is (for practical purposes) equally likely that each book selected will
have more than 220 pages (scored as + ) or less (scored as — ). A complication
we discuss in Section 2.1.1 occurs if a sampled book has exactly 220 pages; this,
did not happen in my sample.

By associating a plus with a ‘head’ and a minus with a ‘tail’ we have a
physical analogue with coin tossing; if the median is really 220, then the result 9
plus and 3 minus signs is physically equivalent to 9 heads and 3 tails when a fair
coin is tossed 12 times. We show in Section 1.2 that this evidence does not
justify rejection of the hypothesis that the population median is 220.

Non-rejection of a hypothesis in this sense does not preve it is true; it only
means that currently we have insufficient evidence to reject it. We do not reject,
because 9 heads and 3 tails is in a set of reasonably likely results when we toss a
true coin. Had we got 12 plus and no minus signs, or vice versa (equivalent to
12 heads or 12 tails) we could reasonably reject the hypothesis that the median
is 220. Indeed, the probability of getting one or other of these extremes in a
sample of 12 is only 1/2048, so such a result in just one experiment means either
we have observed an event with odds heavily stacked against it, or our
hypothesis of a fair coin (or that the median is 220) is not correct. The latter
seems more plausible. For those who are not already familiar with these ideas
we formalize them in Section 1.2. The relevant test is called the sign test.

| 1.1.3 An historical note

It is fashionable to claim that nonparametric methods were first used when J.
Arbuthnot (1710) found that in each year from 1629 to 1710 the number of
males christened in London exceeded the number of females. He regarded this
as strong evidence that the probabilities of any birth being male or female were
not exactly equal, a discrepancy Arbuthnot attributed to ‘divine providence’.
A sign test is appropriate for his data.
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Spearman (1904) proposed a rank correlation coefficient that bears his
name, but a serious study of nonparametric methods for statistical inference
began some fifty years ago in an era when applied statistical methods were
dominated by grossly oversimplified mathematical models of real-world
situations chosen partly because they led to not too demanding computational
procedures: the inaptly named normal distribution was the key to analytical
methods for continuous data; the binomial and Poisson distributions to
methods for discrete data. These distributions still are - and always will be -
important, but they are not all-embracing.

Research into nonparametric and distribution-free methods was stimulated
firstly by attempts to show that even if assumptions of normality often
stretched credulity, then at least in some cases making those assumptions
would not greatly alter valid inferences. This was the stimulus of work by R. A.
Fisher, E.J. G. Pitman and B. L. Welch on randomization or permutation
tests; tests which at that time (the 1930s) were computationally too demanding
for general use.

At about the same time there was a growing realization that observational
data that were not numerically precise but consisted of preferences or rankings
could be used to make inferences in a way that required little computation
effort.

A few years later F. Wilcoxon and others realized that even if we had precise
numerical data we sometimes lost little useful information by replacing them
by their rank order and basing our analysis on computationally simple
procedures using these ranks. Indeed, if an assumption of normality were not
Justified, analyses based on ranks were sometimes the most efficient available.
This heralded an era when nonparametric methods developed as practical
tools for use either when data were by nature simply ordinal (ranks or
preferences) as distinct from precise measurements (interval or scalar); or as a
reasonably efficient method that reduced computation even when full
numerical data were available, but could easily by replaced by ranks. Used in
this way there were still many limitations: simple hypothesis testing was
usually easy; interval estimation much more difficult.

Ever-increasing calculating power of modern computers has revolutionized
our approach to data analysis and statistical inference (see e.g. Durbin, 1987).
Pious hope that data fit a restricted mathematical model with few parameters
and emphasis on simplifying concepts such as linearity have been replaced by
the use of robust methods and by exploratory data analysis in which we
investigate different potential models; areas where nonparametric methods
have a central role.

They may also be applied to counts, these often recorded as numbers of
items in various categories; e.g. numbers of examination candidates obtaining
Grade A, Grade B, Grade C passes. Here the categories are ordinal; Grade A is
better than Grade B; Grade B is better than Grade C; and so on. Categories
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that cannot be ordered by the inequalities greater than or less than are called
nominal; e.g. people may be classified as single, married, widowed or divorced.
For data in these forms nearly all analyses are by nature nonparametric.

A disadvantage of nonparametric methods in the pre-computer era was that
simplicity only applied to basic procedures and nonparametric methods
lacked the flexibility of much linear model and least squares theory that are
cornerstones of normal distribution parametric inference. The advent of
computers has revolutionized this aspect of using nonparametric methods, for
many advanced and flexible methods are tedious only in that they require
repeated application of simple calculations - a task for which computers are
admirably suited and easily programmed.

The dramatic post-war development of nonparametric methods is described
by Noether (1984). Some idea of the volume of literature is given in the
nonparametric bibliography compiled by Singer (1979). It considers work
relevant to applications in just one subject - psychology. Work continues at
an increasing pace.

1.2 HYPOTHESIS TESTS

We assume a basic familiarity with hypothesis testing like that implicit in the
use of r-tests, but we summarize a few fundamentals and illustrate application
to a simple nonparametric situation.

In Example 1.2 we wanted to test acceptability of a hypothesis that the
median number of pages in all 114 books was 220, This implies the median is
some other number if that hypothesis is not true, so our hypothesis that it
equals 220 is something of a cockshy. It may have been suggested by past
experience in assessing book lengths, or have been asserted with confidence by
somebody else. We call this a null hypothesis, writing it H . If 0 denotes the
population median we often use the shorthand notation

H,:0=220
Our alternative hypotheses, collectively labelled H,, are written
H,:0+#220

We speak of testing H, against the two-sided (greater or less than)
alternatives H .

The sign test in Example 1.2 involved a known distribution of signs if the null
hypothesis H, were true, namely the binomial with n =12 and p=1. The
probabilities of each number of successes (here represented by plus signs) is
tabulated; sce, e.g. Neave (1981, p. 6). They are given (to three decimal places)
in Table 1.1,

From Table 1.1 we see that if H, is true, 6 plus (hence also 6
minus) has  maximum probability, and the probabilities fall off



