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ON THE UNIVERSAL GROUP OF THE BORROMEAN RINGS

Hugh M. Hilden *
Maria Teresa Lozano **

José Maria Montesinos **

1. Introduction.

Let U be a discrete group of isometries of hyperbolic 3-space,
H3. We say that U is universal if it has the following property:
If M3 is any closed oriented 3-manifold, then there is a finite
index subgroup, G(M3), of U such that M> s the orbit space of

the action of G(Ma) on H3.

In an earlier paper [1], the authors demonstrated the existence
of universal groups by giving an explicit example. The purpose of this
paper is to improve upon the results of that paper and to give appli-
cations of universal groups by proving several theorems about 3-mani-

folds. Perhaps our most surprising result is the following:

THEOREM: Let 17 be the fundamental group of a compact orientable
3-manifold. Then 7 acts as a fixed point free group of isometries of
a complete hyperbolic 3-manifold. The orbit space is a compact hyper-

bolic 3-manifold with a tesselation by regular hyperbolic dodecahedra.

23 Redefinition of the universal group U.
. P — 3
It is well known that the group of hyperbolic isometries of H
is isomorphic to PSLZ(C). In {2], an explicit formula is given for
the action of a matrix on the Poincaré model of H3. In our paper,

(1], we showed that a group U generated by three matrices in PSLZ(C)

* Research suppported by NSF grant DMS8512285
** Research supported by CICYT PB85-0336



was universal. It turns out that ceitain changes in the proof given
there lead to matrices that are significantly simpler. Here, we repeat
part of that proof, but then diverge from it, to get explicit repre-

sentations of new matrix generators. The "new" group we obtain, which

we continue to call U, 1is conjugate to the old one.

We begin, as in [1], by constructing the regular Euclidean dode-
cahedron whose intersection with the positive octant is depicted in
Figure 1. The value of t is %(/?- 1) and a = 1-t. The rest of
the dodecahedron is obtained from the reflections in the x-y, y-z,
and x -2z planes. The reader can verify that this really is a regular
Euclidean dodecahedron using only vector calculus. He can also verify
that two planes containing adjacent faces of the dodecahedron inter-
sect the sphere of radius R = V1 + £, centered at the origin, in a
pair of circles that intersect each other at right angles. The details
of this calculation are done in [1] and again require only vector

calculus.

#

D= (o,0,1)

A= (a0,

C:(OJI/Q)
-
F=(o,1,0)
E‘(llolo/) B:(',Q,C})
¥

Figure 1

We view the open ball of radius R as the Klein model for hyper-
bolic 3-space. The dihedral angle between two intersecting planes in
the Klein model is the same as the Euclidean angle between their boun-
ding circles. Thus all dihedral angles of our dodecahedron are right
angles. Also, Euclidean rotations and reflections about axes and
planes through the origin are hyperbolic isometries in the Klein model.
Thus the dodecahedron we have constructed is a regular hyperbolic
dodecahedron with dihedral angles right angles. Now we describe an
isomorphism from the Klein to the Poincaré model and find the image

of the directed lines KB, CF and BE under this isomorphism.



Let S be the bounding sphere of the Klein model and let C be
the bounding complex plane of the Poincaré upper half space model, in-
cluding the point at «. We define amap T : P - P' from S to C
by projection from the point (0,0,R). (See Figure 2; the point
(0,0,R) goes to «®). The map T 1is 1-1 and onto. Since each Klein
line intersects S in two points and each Poincaré line intersects C
in two points, T induces a map from Klein lines to Poincaré lines.

We can get a map from Klein points to Poincaré points by choosing any

two lines through a point, finding the image of the lines and mapping
the original point to the intersection of the images of the two lines.

This map is well defined and an isomorphism of the two models.

The lines 55, §E, and CF intersect the sphere S in the

ordered point pairs ((b,0,1),(-b,0,1)), respectively, where
R2 = 1-+b2. Since also R2 = 14 t, and t2 +t =1, it follows that
Rb = 1 and R4 = 1-+R2. Using these last equalities and easy similar

triangle arguments, we see that the three ordered point pairs project
to (1/(R-1), -1/(R-1)), (1l+ib, 1-ib) and (i(R2+1), i(Rz—l)) re-

spectively.

In [1] we explained why H3 has a tesselation by regular hyper-
bolic dodecahedra of the type we have just constructed, and we showed
that a universal group was generated by three 90° rotations, with axes
taken from each of three pairs of opposite edges of any one dodecahe-
dron. (For example, the axes AD, BE, and CF of the dodecahedron
in Figure 1.) Thus any one dodecahedron can serve as fundamental
domain. The orbit space is S3 and is obtained by identifying pairs
of pentagons that are adjacent along an axis of rotation. (Refer again
to Figure 1). The Borromean rings are the image of the three axes of

rotations.



In the sequel, we will need more precision in identifying our
matrices. First of all, we orient the three edges of the dodecahedron
in Figure 1 with directions AB, EE, and CF. This orientation is
preserved by the 120° rotation about the line through the origin and
(1,1,1) in Figure 1. We will consider various embeddings of this dode-
cahedron in the Poincaré upper half space model of H3. We will use
the letters A, B and C to denote the positive (using the right
hand rule) 90° rotations about the oriented axes corresponding to
KB, BE and E%, respectively. The orientation of the three axes in-
duces the usual orientation of the Borromean rings with its three-fold
symmetry. This is depicted in Figure 3 with the components labelled

a, b and ¢ corresponding to the axes of rotation of A, B, and C.

b
NS
Q
Figure 3

On the other hand, considering the branched covering H3 - H3/U = S3,

the orientation of the Borromean rings induces an orientation in every
axis of rotation of U. Thus we shall speak of 90° rotations as being

either "positive" or "negative".

By the preceding conventions, we may choose as generators of our

universal group U, the isometries Al’ B1 and Cl that are the
positive 90° rotations about the directed lines (1/(R-1), -1/(R-1))
(1+ib, 1-ib) and (i(R®+1), i(R®-1)) respectively.

The matrices that represent these rotations, which we also denote

by Al' Bl’ and Cl are:



1 1 -i/(R=-1)
Al=__
V2 -i(R-1) 1
1 -R RS
1
Bl I— )
v 2 -R 1 + R J
1 - ir? g
I
Cl I 2
V2 -1 1 + iR

These matrices have been computed in the following way. The M&bius

Zi = 1%

= ; (6]
transformation, w = , sends z 6 ©, 4
z-zy () 1

reponds to a matrix T. The matrices T,T_l, and the matrix R(O,%®)

to «, and cor-

representing positive 90° rotation about the directed axis (0,») are:
1 ) N . -z, 24 w O
T = , T , R(O,®) =
(z5 = 2q) =
1 -z -1 1 o w

_ 1, 1.
where w = /2(2+»21).

It follows that the matrix R(ZO’ZI)’ representing positive 90° rota-
tion about the directed axis (zo,zl) is given by T_lR(O,m)T. Using
g2 = i, we compute that:
- ZO-lzl —zozl(l— i)
R(ZO’Zl) = (zo - zl)
Ll—l —zl+1zo
The matrices Al’ Bl’ and C1 were obtained by substituting in
this formula, making heavy use of the algebraic relation
R%(R-1) (R+1) = R?-Rr% = 1.
But the entries of the matrices Al’ Bl’ and Cl are not algebraic
integers. Let P = DEF where R2 =R, u-= %v7(1+-R+~R2), so that
1/u = %/?(1-—2R-+R3), and D, E and F are:
Ao 1 /7 1 o
D = ; E = ; F =
o 1/» o 2/2 o

Conjugating the matrices A;, By, and C, by P 1is equivalent to

choosing a different embedding of our dodecahedron in the Poincaré-



upper half space model. The matrices X = P-lXIP where X = A,B,C
constitute new generators for our universal group U, which will
remain fixed for the rest of the paper. The matrices A,B,C were com-
puted directly and are given below. We found the matrices D,E,F by

following ideas in [3].

.
1 - iR + iR? Al = ARF = AR°
& = BT
2 3 5
1 - 2iR™ + iR 1 + iR - iR
_ . _
1 - R + & 1 - R+ R
B = %/?
R - R + R° 1 +R- R?
1+ R - iR -i - 2iR® - iR3
¢ = /7
4 2 2
-1 - R + R 1 - R + iR

We can verify directly that all the entries of A, B, and C are

algebraic integers. For example if x is the 1,2 entry of B then

2x2 = (l—R+R2)2 = 1+R2+R4—2R+2R2—2R3 = 2—2R+4R2— 2R3, so that
X2 = l-—R-+2R2-R3. Since R is an algebraic integer, so is x2, and
so is x. We summarize the preceding remarks and computatioﬁs in a

theorem. (Recall R = /1+t = V/1/t.)

THEOREM 1. The universal group U 1is a subgroup of PSLZ(A) where

A is the ring of algebraic integers of the field Q¢ 2, i, vI).

This theorem improves upon theorem 5.1 of [1] by getting rid of
/33 thus reducing dimension over Q from 32 to 16. Next we

compute a presentation for U.

THEOREM 2. A presentation for the universal group U is

< A,B,C; (CACA)B = B(CACA), (ABAB)C = C(ABAB), (BCBC)A = A(BCBC),
I = A4 = B4 = C4 >
PROOF. If we remove the Borromean rings from S3 and all the axes of
rotations in U from H3, then we have a regular covering space
p : (H3-axes) * (S3-Borromean rings). It follows from covering space

theory that U = ﬂl(S3<-rings) modulo p*ﬂl(HB-axes).

The usual Wirtinger presentation for the Borromean rings, obtained



from Figure 3, is <a,b,c; (caca)b = b(caca), (abab)c = c(abab),
(bcbcya = a(bcbc)> where a, b, and ¢ are "positive" meridians about
each of the three components. Also, it follows from the definition of
the isomorphism ﬂl(S3-rings)/p*ﬂl(H3-—axes) = U, that positive
meridians lift to positive rotations. Choosing the base point for
Wl(H3-axes), in the embedded dodecahedron fundamental dcmain, the
meridians a, b, and ¢ 1lift to the rotations A, B, and C respectively.
The group 71(H3-axes) is generated by meridians and, because the
branching is all of order four, meridians in Wl(H3 - axes) project

to fourth powers of meridians in p*ﬂl(HB— axes). Since any meridian
in ﬂl(SB-rings) is conjugate to one of the meridians a, b, or c,

it follows that the group p*'il(H3 - axes) 1s the normal closure of
a4, b4, and c4. Now it is clear that a presentation for U 1is ob-
tained by adding the three additional relations to the presentation

of the Borromean rings group. ]

If we examine the relations in the presentation for U we see
that the concept of words of even length in A, B, and C is well
defined. Let W be the index two subgroup of U consisting of words

of even length.

THEOREM 3. The group W, of words of even length in A, B, C, 1is a
subgroup of PSLZ(B) where B 1is the ring of algebraic integers of
the field 0Q(i, V).

PROOF. The group W 1is generated by all products XY where X and

Y egual A or B or C. From Theorem 1 any such product has alge-

braic integer entries. From the expressions for A, B, and C any

such product has entries in the field Q(i, vt). ]
A well known result from Kleinian group theory implies the

group U has a finite index subgroup that acts freely on H3. We

identify such a group as the kernel of a homomorphism we now

construct.

The Borromean rings are oriented, so we have the natural homo-
morphism from ﬂl(S3 - Borromean rings) to Hl(S3-—Borromean rings) =
Z ® Z ® Z, which we compose with reduction modulo four to get a
homomorphism onto Z/4 & Z/4 ® Z/4. Since the presentation of U is
obtained from the presentation of vl(S3-Borromean rings) by adding

the additional relators A4, B4, C4, and these are sent to zero, a



homomorphism of U is induced which we call «.
o : U—— Z/4 & Z2/4 & Z/4

Composing o with the additive homomorphism from Z/4 & Z/4 & Z/4

to 7Z/4 we obtain a homomorphism we call 6.
o g B ——> Z/4 .
Let N be the index four subgroup, kernel &.

A positive rotation in U corresponds to a positive meridian in
nl(S3-rings). A positive meridian is sent to (1,0,0), (0,1,0), or
(0,0,1) under the homomorphism from homotopy to homology. It follows
that the homomorphism 6 sends a positive rotation to 1, and sends
any rotation to 1, 2, or 3. Consequently kernel = contains no ro-

tations and the next theorem follows.

THEOREM 4. The universal group U, has an index four subgroup N
3

which acts freely on H”. Also, U/N 1is cyclic.
An interesting property of U, unusual for Kleinian groups, is

that it has a homomorphism onto a Euclidean crystallographic group.

We shall now describe the Euclidean crystallographic group V,
the homomorphism from U onto V and the induced homomorphism from

U to the point group of V.

Take a unit cube in E3 with faces bisected and labelled as in
Figure 4, and form a tesselation of E3 from the integer translations
of the cube. The face bisectors fit together to form a family of non
intersecting lines. Define V to be the group generated by 180° ro-

tations in these lines. Then we see that V has the following

properties: |

| =7




1. The group V 1is a Euclidean crystallographic group.
2. The translation subgroup T has index eight.
3. The point group V/T = Z/2 & 2/2 & 2/2.

4. Any one cube (we shall take the one in Figure 4) serves as funda-

mental domain.

5. The group V 1is generated by the rotations A, B, C about the
axes a, b, ¢ respectively.

3 3

6. The map E~ - E3/ V=2_g

image of the axes of rotation is the Borromean rings.

is a branched covering space map. The

7. 1In exact analogy withAthE more difficult case of U, the group V
has a presentation <A, B, C; relators coming from the Borromean
rings, ;2, gz, 62/ -

The presentation of V 1is exactly the same as the presentation

of U except for the power of the last three relators, which is two

instead of four. It follows that the{e %s a homomorphism from U onto

Vv defined by sending A, B, C to A, B, C resgpectively. We call this

homomorphism 6 and we call the homomorphism from U to V/T obtained

by composition (.

g : 0 —— V
o0 U —— 2/2 @ 2/2 8 2/2
3 3 Sy - 3 a2 &
The natural maps H~ =+ H™ / kernel 8 E” > H /U S are both
branched covering space maps, the group of covering transformatinns

for the latter is V.

3. Applications to 3-manifold theory.

Every closed oriented 3-manifold is obtained as the orbit space of
the action of a finite index subgroup of U on H3. This fact en-
ables us to prove several theorems about the structure of 3-manifolds

and their fundamental groups.

THEOREM 5. Every closed oriented 3-manifold can be "pentagulated";
that is, obtained from a finite set of dodecahedra by pasting along

pentagonal faces in pairs.

PROOF. Given M3 let G(M3) be a finite index subgroup of U with

M3 » H3/G(M3). Since a fundamental domain for U 1is any one dodeca-

hedron, a fundamental domain for G(M3) is n dodecahedra where n



is the index of G(M3) in U. The theorem now follows from the

definition of fundamental domain. rj

The presentation of a 3-manifold given in the previous theorem
actually determines a cell decomposition with very special properties.
To see this consider the pentagonal faces of the dodecahedra in the
tesselation of H3 left invariant by U. Because the dihedral angles
of the dodecahedra are right angles, the pentagonal faces fit together
to form hyperbolic planes tesselated by pentagons. All such planes form
what we shall call "the family of planes". Any two planes in the family
either do not intersect or intersect at right angles. If three planes
intersect, they intersect the way the x-y, y-2z and x -z planes do in
E3. The group U, and its subgroup G(M3), leave the family of planes
invariant, and the 2-skeleton is the orbit space of the family of

planes under the action of G(M3).

Since G(M3) contains only elements that act freely, or are two-
fold or four-fold rotations, the singularity structure is easy to de-
termine from the singularity structure of the family of planes, or
locally from the action of a two-fold or four-fold rotation on the
family of planes. The singularities in the two skeleton of the cell
decomposition of M3 are of the type in the family of planes or are

of the type in Figure 5.

o
éé/w/ |
i il

two-fold axis four-fold axis

|

Figure 5

In fact the 2-skeleton has the structure of an immersed sub-

manifold. We summarize this in our next theorem.
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THEOREM 6. Any closed oriented 3-manifold has a cell decomposition
whose 2-skeleton is the image of an immersion of a disconnected sur-

face with boundary.

The immersion is in general position. There are no branch points

and the double points are as in Figure 5.

There are subgroups of U (such as N) that act freely on H3
producing special hyperbolic manifolds as orbit spaces. We formalize

the special properties of these manifolds in the following definition.

DEFINITION. A 3-manifold is called dodecahedral if it is a complete
hyperbolic 3-manifold with a tescelation by regular, right=dihedral
angled hyperbolic dodecahedra.

Let X be the manifold Hg/N where N is the index 4-gsubgroup
of U from Theorcm 4. Then, since N acts freely on u?  ana preserves
the tesselation, X 1s an example of a dodecahedral manifold. The next

theorem indicates why dodeccahedral manifolds may be important.

THEOREM 7. Every closed oriented 3-manifold is the orbit space of an

orientation preserving Z/4 action on a dodecahedral manifold.

PROOF . Given M3, choose G(M3) of finite index in U with

H3/G(M3) i M3, and with G(M3) containing a four-fold rotation. Then
kernel 6 restricted to G(M3) equals N 1 G(M3), where 8 was de-
fined in section 2. Since N n G(M3) < N which acts freely, it follows
that HB/G(M3) (i N 1is a covering space of X, is compact, and is
dodecahedral. Since G(M3)/(G(M3)n N) = Z/4, the map

H3/(G(M3)n N) - H3/G(M3) s M3 is a four-fold cyclic covering space map.

]

Next we prove a theorem about fundamental groups of 3-manifolds and

dodecahedral manifolds.

THEOREM 8. Let 1 be the fundamental group of a compact oriented
3-manifold M3. Then 7 1is isomorphic to a group of fixed point

free, tesselation preserving, isometries of a dodecahedral manifold.

PROOF. Let G(M3) and N be as in the proof of the preceding

3
theorem. In [1] we showed that nl(M3) = G(M3)/TORG(M ) where
TORG(M3) is the subgroup of G(M3) generated by rotations. (This



