Computer
Operating
~ Systems

For micros, minis
~and mainframes

DAVID BARRON

CHAPMAN AND HALL COMPUTING



Computer Operating
Systems

FOR MICROS, MINIS AND MAINFRAMES

David Barron

Professor of Computer Studies
University of Southampton

SECOND EDITION

LONDON NEW YORK
Chapman and Hall



First published 1971 by
Chapman and Hall Ltd
11 New Fetter Lane, London EC4P 4EE
Reprinted 1973, 1975
econd edition 1984
Published in the USA b
Chapman and Hall
733 Third Avenue, New York NY 10017

© 1971, 1984 D. W. Barron

Printed in Great Britain by
J.W. Arrowsmith Ltd., Bristol

ISBN 0 412 15620 2 (hardback)
ISBN 0 412 15630 X (paperback)

This title is available in both hardbound and paperback editions,
The paperback edition is sold subject to tﬁe condition that it

shall not, by way of trade or otherwise, be lent, re-sold, hired
out, or otherwise circulated without the publisher’s prior consent
in any form of binding or cover other than that in which it is
published and without a similar condition including this condition
being imposed on the subsequent purchaser.

All rights reserved. No part of this book may be reprinted, or

reproduced or utilized in any form or by any electronic, mechanical

or other means, now known or hereafter invented, including photocopying
and recording, or in any information storage and retrieval system,
without permission in writing from the Publisher.

British Library Cataloguing in Publication Data

Barron, D.W.
Computer operating systems.—2nd ed.—
(Chapman and Hall computing)
1. Operating systems (Computers)
1. Title
001.64'25 QA76.6

ISBN 0-412-15620-2
ISBN 0-412-15630-X Pbk

Library of Congress Cataloging in Publication Data

Barron, D. W. (David William), 1935-
Computer operating systems.

Includes index.

1. Operating systems (Computers) I. Title.
QA76.6.B37 1984 001.64'2 84-9537
ISBN 0-412-15620-2
ISBN 0-412-15630-X (pbk.)




Preface

This book is based on my earlier text, Computer Operating Systems, written
in 1970. In the preface to that book I remarked that ‘. . .up to the present,
development (of operating systems) has been of a largely ad hoc and
pragmatic nature, and has been aptly characterized as “moderate suc-
cess at enormous expense”” ’. Thirteen years later the picture is not much
different so far as mainframe systems are concerned. Thousands of man-
years have gone into the development of systems like IBM’s VMS and
ICL’s VME, producing systems that occupy prodigious amounts of
memory, soak up processor cycles, and require an army of systems
programmers to ‘maintain’ them. Truly it has been said that, ‘an ele-
phant is a mouse with an IBM operating system’. While this investment
means that systems of this kind will be with us for many years to come,
they are in some way the end of the line, and will come to be seen as an
evolutionary dead-end.

Looking at these over-large and excessively complicated systems, one
cannot help feeling that there must be a better way of doing things, and
driven by the very different requirements of small machines a new breed
of operating system has developed for mini- and microcomputers, quite
unlike the traditional variety. The emphasis in this book is largely on
these new operating systems, in keeping with my view that the main-
frame has had its day, and that the future lies with the micro. However,
the older systems are by no means ignored since there is much to be
learned from a study of the past, in computing as in any other subject.

With an increasing understanding of operating systems we see more
clearly their underlying structure, and this text is more concerned with
the way operating systems can now be constructed than with the sordid
details of the internal economy of the older systems. Moreover, itis not a
theoretical text: it remains sufficiently close to the realities of modern-
day operating systems to give the reader an appreciation of why things
are as they are, as well as how they might be.



viii

COMPUTER OPERATING SYSTEMS

Whatever kind of computer system is used, an operating system i
likely to loom large in the user’s view. Thus, not only students an
computer specialists, but also anyone interested in how compute
systems work, needs to know about operating systems. It is my aim t
convey ‘what everyone in computing should know about operatin;
systems’. I hope that Computer Operating Systems will be of use i
introductory courses, and will also be of interest to all computer users
including the growing army of amateurs who find in computing ai
absorbing hobby.

David Barron



Contents

Preface vii
1 Some background 1
1.1 What the operating system does 1
1.2 Kernel and superstructure 3
1.3 Datamanagementand job control 4
1.4 Categories of operating system 4
2 Mainly historical 6
2.1 Theuse of history 6
2.2 Theearly batch systems 6
2.3 Spooling systems 8
2.4 Time-sharing and multi-access systems 21
2.5 Transaction processing systems 25
2.6 Microcomputer monitor systems 26
3 Operating system architecture 29
3.1 Theneed for concurrency 29
3.2 The process concept 30
3.3 Processes and process structure 31
3.4 Functions of the kernel 33
3.5 Operating system structures 33
3.6 Interrupts 36
4 Processes and virtual machines 38
4.1 Introduction 38

4.2 Scheduling 38



vi COMPUTER OPERATING SYSTEMS

4.3 Process communication and synchronization 41
4.4 Protection 46
5 Memory management 49
5.1 Requirements for memory management 49
5.2 Protection keys 50
5.3 Memory mapping 50
5.4 UNIXmemory management 55
5.5 Paged memory 56
5.6 Segmentation 65
6 Discsand files 69
6.1 Some general considerations 69
6.2 Device-level /O 71
6.3 Physicallevel I/O for discs 73
6.4 Logical I/O fordiscs 73
7 Terminals, printers and networks 92
7.1 Character devices 92
7.2 Theterminalinterface in CP/M 93
7.3 Terminal handling in multi-user systems 95
7.4 Terminal1/Oin UNIX 96
7.5 Printers 99
7.6 Smart terminals and transaction processing 101
7.7 Communications processors and networks 103
7.8 Computer networks 104
8 The userinterface 110
8.1 Components of the user interface 110
8.2 System calls 110
8.3 Theinteractive interface 114
8.4 Thebatch interface 118
8.5 Command languages 121
Further reading 134

Index 136



1
Some background

1.1 WHAT THE OPERATING SYSTEM DOES

Almost without exception, every computer has an operating system.
The reasons for having one, and the particular kind of system, are very
different on different varieties of machine, but the operating system is
always there. Indeed, to most users the operating system is the machine.
They never see a ‘raw’ machine: instead they see and use the interface
presented by the operating system.

A ‘raw” machine is a most inhospitable device. In order to do anything,
it requires a program in a specific binary representation of the particular
machine code. In particular it needs more-or-less complicated programs
to drive its peripherals before it can even communicate with the outside
world. It is therefore usual to provide system software to make the system
usable. In a home computer this system software is an integral part of
the system, contained in a read-only memory (ROM) and automatically
entered when the system is switched on. Thus the user does not distin-
guish between the CPU (central processing unit) and the operating
system: they combine to provide a programming environment in which
programs (usually in BASIC) can be run, saved on cassette tape and later
reloaded. In large personal computers (e.g. the IBM PC) and in mini-
computers and mainframes we can identify a number of individual
pieces of system software, mostly concerned with program preparation
— editors, assemblers, compilers, link-editors, etc. Pervading all these is
the operating system. It has been described as the ‘glue’ which holds all
the other components together. Alternatively we can view it as provid-
ing an infrastructure: a common environment in which the various
system programs can operate, including the mechanisms for communi-
cating with the peripheral devices. (From the early days, some of the
complexity of controlling input/output devices had been concealed from
the user by the provision of a software package called the Input-Output
Control System (IOCS), and with the trend in early computers to have
I/O functions controlled partly by hardware and partly by software, a



COMPUTER OPERATING SYSTEMS

natural development was to incorporate the IOCS into the operating
system.)

This is a relatively modern view of operating systems, which were
originally developed in response to a quite different need — to maximize
the utilization of the central processor and peripheral devices. We must
remember that the early computers were phenomenally expensive, and
so could not be allowed to be idle. It was therefore necessary to automate
the flow of work, and bring decisions on the management of system
resources on to the time-scale of the computer rather than that of the
human operator. Falling hardware costs removed the preoccupation
with 100% processor utilization, but at the same time the typical mode of
usage of computers changed, with more emphasis being placed on
simultaneous access by a large number of users. Thus the operating
system now had to manage the sharing of resources among, the users.

As the need to optimize utilization has diminshed, another aspect of
the operating system has become of increasing significance: the software
interface. Increasing complexity of computer systems led to further
functions being incorporated in the operating system to aid the user — for
example, organizing disc storage so that it appears as a logical file-
structure to the user, unconstrained by the physical organization of
tracks, sectors and blocks. The operating system can thus have two
distinct facets: on the one hand controlling the allocation and utilization
of shared resources, and on the other hand providing an interface to the
hardware more convenient and amenable than that presented by the
naked machine. This duality of purpose is characteristic of any multi-
user operating system, and we will find the same structure in the operat-
ing systems both of mainframes and of multi-user minis.

We can thus define the function of an operating system as being to
provide a convenient environment for the user(s) of a computer system,
whatever their requirements — program development, real-time process
control, database management, payroll or whatever. In the case of a
personal computer, there is only one user, and the sole function of the
operating system is to implement the user-interface. In the case of a
multi-user system the operating system must share the resources so as to
provide the user-interface to each of the users. Instead of optimizing the
utilization of the processor, the aim is to optimize the productivity of the
user.

The provision by the operating system of a convenient software
environment has had a dramatic effect on the development of personal
computers. In the heyday of mainframes and minis, the software was
provided by the manufacturer and (to a lesser extent) by the installation’s
systems programmers, and applications programs were not expected
to be portable between machines. In the microcomputer world, how-



SOME BACKGROUND

ever, the situation is different. Software is sold ‘off the shelf’, and users
shop around for the package that best suits their requirements. The
situation was bedevilled by incompatible file formats and programming
systems until an operating system called CP/M became the de facto stand-
ard for 8-bit micros, ensuring that programs written to the CP/M inter-
face could be run on most microcomputers.

1.2 KERNEL AND SUPERSTRUCTURE

In discussing operating systems it is convenient to separate those parts
which provide the user environment from those parts more directly
concerned with sharing resources and interfacing to the machine hard-
ware, such as interrupt handling, storage management, processor
scheduling, etc. This latter area we will describe as the kernel, and the
remainder we call the superstructure. On this definition the superstruc-
ture comprises those parts of the operating system that provide the
basis of services to the user (filing system, command language, etc.), but
does not include system software such as editors (which we regard as
applications programs). Many older systems include the editor as part
of the operating system, but this is not a good feature, since it makes it
impossible for the user to take advantage of new developments — he is
stuck with the system editor.

The distinction between kernel and superstructure is a particularly
useful one to make. It allows the description of a general-purpose
operating system to be divided into two parts with a clean interface — as
long as one understands what the kernel does, one can follow an explana-
tion of the superstructure without needing to know how the kernel does
its job. Also, the distinction allows us to categorize neatly the operating
systems of smaller machines. Thus many minis have an operating system
(typically described as a ‘resource-sharing executive’) which consists
almost entirely of kernel, with a very minimal superstructure. DEC’s
RSX11-M is a typical example of this category of operating system.
Personal computers, on the other hand, have a rudimentary operating
system that is almost entirely superstructure — since most resources are
dedicated to a single purpose there is little for the kernel to do apart from
interrupt handling. (What we have just said about single-user systems
applies strictly only to single-user single-process systems, in which the
single user can do only one thing at once. More advanced single-user
systems (e.g. Concurrent CP/M-86) allow the user to set up a number of
tasks to run in parallel. In such a system resource allocation once more
becomes a necessary function of the operating system.)



COMPUTER OPERATING SYSTEMS

1.3 DATA MANAGEMENT AND JOB CONTROL

The major facilities offered by the superstructure are data management
and job control. An important part of data managment is the control of
the input-output devices. However, there is more to data management
than this. The operating system must map logical file structures on to
physical devices, and provide access methods whereby particular records
of a file can be accessed without having to specify at user level the details
of file structure and disc layout. If information in files is subject to
frequent amendment the system must also take necessary steps to pre-
serve the integrity of the stored information. The operating system can
also provide a degree of device-independence, so that the user can see
the same logical file structure, independent of the particular devices
used for storing his files.

Job control is concerned with executing the user’s programs. For a
single-user system, or a multi-user on-line terminal system, this requires
a command interpreter which accepts commands from the keyboard and
performs the operations requested. Job control becomes much more
complex in a ‘batch’ system where users submit jobs to be run without
intervention. (For this purpose we define a job as the basic independent
unit of work submitted to the machine, i.e. a unit thatis neither connected
with any other unit of work, nor dependent on any other unit for its
completion.) A job will frequently (in fact usually) be composed of
job-steps, e.g. compile, link-edit, run. The system must allow the user to
link together any number of operations as job-steps, providing the right
environment and resources for each step and organizing the passing of
files from one job-step to another. It must also be possible to make
execution a job-step conditional on the successful running of earlier
steps, and even to specify alternative sequences dependent on the
outcome of earlier job-steps. For full generality it is desirable for the user
to be able to specify steps that can be performed simultaneously, and to
be able to synchronize such parallel execution.

1.4 CATEGORIES OF OPERATING SYSTEM

In conclusion we define a few terms that are used to categorize operating
systems.

Single user and multi-user are self-explanatory.

A multi-programming system is one in which the available processor(s)
is shared (by the operating system) amongst several programs co-
resident in main memory, in order to improve CPU utilization.

A foreground-background system is a single-user sytem in which two
programs are multi-programmed. One (the foreground) interacts with



SOME BACKGROUND

the terminal and runs as long as it is able; the background program is
assigned to the processor whenever the foreground program is unable to
proceed (e.g. because it is waiting for the user to do something). As soon
as the foreground job is free to proceed it does so. A foreground-
background system is a particular case of a single-user multi-process
system.

A concurrent or multi-tasking system is a generalization of a foreground—
background system in which the user of a single-user system can initiate a
number of concurrent jobs, assigning the terminal display to any one of
the jobs as required. (But note that older texts use the term ‘multi-tasking’
with the meaning here ascribed to multi-programming. Computer ter-
minology is a minefield.)

A time-sharing system shares the processor and memory amongst a
number of programs, each associated with a remote interactive terminal,
in such a way that each user thinks he has a machine to himself.

A transaction-processing system (TP system) resembles a time-sharing
system in that it serves a number of remote terminals. However, whereas
in a time-sharing system each remote user is associated with a different
program, and is totally independent of the other terminals and pro-
grams, in a TP system all the terminals are connected to the same pro-
gram (or suite of programs). This program accepts transactions from its
terminals, processes them and sends responses. The classic example of
a TP system is an airline reservation system.

Finally, a general-purpose system is a multi-user system that combines
batch processing, time-sharing and possibly transaction processing in a
single (usually large and complex) system.



2

Mainly historical

2.1. THE USE OF HISTORY

In this chapter we trace the development of the ‘traditional’ batch and
time-sharing systems. In addition to giving an insight into systems that
are widely used at the present time, this historical survey introduces
many of the concepts that came together to form the basis for design
of modern operating systems. The technology of computing changes
rapidly, and today’s innovation is tomorrow’s museum piece. In many
parts of the subject it is best to dismiss the history and launch straight into
current technology, but in operating systems we can learn by following
the historical development. Seeing this in a modern context provides a
good basis for understanding the complexities of modern operating
systems — today’s Concurrent CP-M/86 has a lot in common with yester-
day’s multi-programming executive.

2.2. THE EARLY BATCH SYSTEMS

In the early days of computing, the machines were ‘hand-operated’.
That is to say, the operator (in those days often the programmer) set up a
job by loading the card-reader, mounting magnetic tapes, etc., and then
started the program by manipulating switches on the console. If the
program called for operator intervention the operator took appropriate
action and restarted the program. Finally, when the job was finished, the
operator dismounted the tapes, unloaded the card reader, removed the
listing from the printer, and then started setting up the next job. Given
the capital cost of a computer in those days, such a method of working
was acceptable only so long as the set-up time was insignificant in
comparison with the run-time of the job. The early computers were so
slow that this was usually the case, but as computer speeds increased,
the ratio of set-up time to run-time grew to unacceptable proportions,
and the need arose to automate the job-to-job transition. The increase in
processing speed also highlighted the disparity between the speed of



MAINLY HISTORICAL

operation of the processor and that of the input-output devices. Efforts
to remove this mis-match led to two developments. The first was the
introduction of the I/O channel, which was a piece of hardware to control
I/O devices in an autonomous manner. Once started, the channel ran
independently of the central processor, thus allowing I/O to be over-
lapped with computing. The program could initiate a transfer and at a
later time interrogate the channel to determine whether the transfer had
been completed. The second development, of greater significance to the
development of operating systems, was the introduction of the tech-
nique of ‘off-lining” I/O. Instead of the computer using the slow peri-
pheral devices directly, input was transcribed from cards to magnetic
tape, and the program got its input by reading card-images from the
tape. Similarly, output was written as card-images or line-images to
tape, and these were later transcribed to card punch or printer as
appropriate. The off-line transcription to and from tape was initially
done by special-purpose hardware, but it was soon found that it was
more economic to use a small computer as a ‘satellite’. (The large IBM
7090 scientific computer was rarely to be found without an attendant
1401, a small data-processing machine, as a satellite handling its I/O.)
Once the principle of off-lining I/O to tape was established, the way was
open for the development of an automated job-sequencing system. All
that was required was to record a number of jobs (a batch) on tape and
arrange that instead of the machine stopping at the end of a program,
control should revert to an operating system (or monitor program)
that immediately started the next job. (This is somewhat of an over-
simplification, but will suffice for the present.) Probably the first such
system was SOS, the Share Operating System devised by the association
of users of IBM machines called SHARE. SOS was the forerunner of the
classic Fortran Monitor System, FMS. Since such systems executed a
batch of jobs on a magnetic tape in automatic sequence, they became
generally known as batch systems.

This kind of system had two main attributes: it automated the sequenc-
ing of jobs, and it fooled programs into thinking that they had a real
card-reader and line-printer when in fact their /O was being off-lined.
This latter did not present much difficulty: I/O via an autonomous chan-
nel was so complicated that it was in any case carried out by a package of
system routines called the I/O Control System (IOCS). The existence of
the off-lining process was easily concealed by modifying the appropri-
ate IOCS routines. Automating the job sequencing had more substantial
implications. It was necessary to ensure that the monitor was entered
whenever a program terminated, natually or by reason of error. Thus
FMS programmers were instructed never to use STOP but to terminate
execution by CALL EXIT. (To this day some FORTRAN systems use



COMPUTER OPERATING SYSTEMS

CALL EXIT, though few of the users or implementors appreciate the
reason.) Important facts to note at this stage are:

(D

@)

@)

(4)

The monitor program must reside in memory, and will make use
of the processor whenever it runs. This is an example of the overheads
that arise from the use of an operating system. When assessing
operating systems the magnitude of such overheads is a major
consideration.

We have to ensure that the control program is not overwritten by the
user program. We also have to ensure that a user program never
STOPs, and does all its I/O via the routines of the IOCS. In the early
days it was necessary to rely on programmer discipline, but later
systems had assistance from the hardware. For safety it is necessary to
have such hardware assistance: the minimal requirements are some
sort of storage protection, to deal with the overwriting problem, and
a distinction between normal mode working, in which some opera-
tions cause a trap to the monitor system, and privileged mode
working in which anything goes, so that attempts by the program to
STOP or initiate I/O activities can be intercepted.

The system must be resilient against badly formed input decks and
faulty programs. Thus an incomplete program must not result in the
compiler consuming the data cards (or, worse, the next program),
and a program must not be allowed to read past the end of its own
data. The user must therefore provide control information to delimit his
program and data. This will take the form of control cards, and it will be
necessary to have some convention to distinguish these cards. A
common convention is to put a special character (e.g. a dollar sign) in
the first column. This means that no program or data card can start
with this character — an example of the constraints that the operating
system imposes on the user.

There must be a means of communication between the compiler(s)
and the operating system in order to signal compiling errors and
inhibit the subsequent running of the job. Some systems dodge this
issue by making the compiler(s) part of the operating system. This is
a reprehensible practice, since it makes it difficult to incorporate
new compilers, and so restricts the user to the designer’s choice of
language(s).

2.3 SPOOLING SYSTEMS

For a while, systems of the type just outlined reigned supreme. The next
development was triggered by the arrival of a new hardware technique,
the interrupt. The difficulty of synchronizing an autonomous I/O channel
has already been noted. The interrupt obviates this difficulty by having



MAINLY HISTORICAL

the channel signal the computer when it has finished its job, or when an
error condition arises that requires program intervention. When an inter-
rupt occurs the hardware preserves the current state (register contents)
and enters an interrupt routine to deal with the channel. When the channel
has been serviced the interrupted program can be resumed, the hard-
ware restoring the register contents before returning control. The whole
process is transparent to the interrupted program, which has no know-
ledge of the interrupt. It is thus possible for a program to keep peri-
pheral devices running at full speed without having to keep a constant
check on the process of the I/O transfers. (It is of interest to note that the
interrupt is probably the first computing concept not to have been
anticipated by Babbage.)

Initially, this technique was used within a single program, but it
required skilled programming and it was soon appreciated that better
utilization of equipment could be obtained by the technique of multi-
programming. This is the technique of having several programs simul-
taneously in memory, so that whenever one program is waiting for a
peripheral device another will be able to use the processor. Multi-
programming is particularly effective if programs that are peripheral-
limited (in the sense that their execution time is determined mainly by the
time taken doing input and output) are run at the same time as programs
that are processor-intensive. The first computer to introduce this con-
cept was the Ferranti Orion; multi-programming was fully exploited in
the Ferranti (later ICL) Atlas machine.

The concept of multi-programming had an important, and perhaps
unexpected, application in operating system design. In a classic FMS-
type system the satellite computer is peripheral-limited, while the large
computer is for the most part processor-limited. There is thus a poten-
tial advantage in dispensing with the satellite and instead using a single
computer to perform both jobs by means of multi-programming. Since
there is no longer a satellite computer there is of course no physical
transfer of a batch of jobs. The earliest systems of this kind used tape as a
backing store, and thus still processed jobs in batches. With the advent of
disc storage the system became a continuous flow or job-stream process,
but the terminology ‘batch-system” still persists.

Systems of this kind are called spooling systems. The acronym SPOOL,
derived from ‘Simultaneous Peripheral Operation On-Line’ was coined
within IBM, though the technique pre-dates the acronym, being known
within Ferranti as ‘pseudo-off-line input-output’. The technique of
spooling was invented at Manchester University as part of the Atlas
Supervisor (which incorporated many other innovations.) That
spooling system was tape-based — a triumph of ingenuity over tech-
nology — but all subsequent spooling systems have been disc-based. A



10

COMPUTER OPERATING SYSTEMS

spectacularly successful early spooling system was IBM’s HASP.

A spooling system involves three simultaneous activities: reading card
images to disc, running jobs from disc with output to disc, and transcrib-
ing line images from disc to printer. The operating system evidently
becomes more complex since in addition to all its previous functions it
has to simulate concurrent activity with a single processor and memory.
The description of the operating system is simplified if we recognize that
this simulation of concurrency is a largely self-contained activity, and
encapsulate it in a multi-programming executive. The benefit of this is that
the executive-hardware combination defines an abstract ‘machine’ that is
capable (apparently) of sustaining concurrent activities. We can there-
fore describe the spooling system in terms of this ‘machine’ without
worrying how concurrency is achieved. This is an example of the ‘separ-
ation of concerns’ that is so important a part of structured design.

2.3.1 The multi-programming executive

We start by describing a simple executive that is capable of running a
fixed number of programs in a pseudo-concurrent manner. The first
thing to note is that the programs and the executive must share the
memory, each being allocated a contiguous area of appropriate size. We
say that the memory is partitioned. We have to ensure that a program in
one partition cannot affect a program in any other partition. Although it
is sometimes necessary to try to enforce this by software, for complete
safety we require hardware assistance in the form of memory protection or
memory mapping. We shall examine possible protection and mapping
techniques later.

In order to implement multi-programming the hardware must pro-
vide a real-time clock or interval timer. This is a device that generates an
interrupt after a preset interval: since such clocks are usually driven by
the mains frequency the interval will be a multiple of 1/50 second (1/60
second in the USA). If the programs being multi-programmed were
completely independent of each other and of external events, the execu-
tive would be trivial. We would set the clock to a suitable interval, say 1/10
second, and use the interrupt to switch from one program to the next, so
that the programs are run in turn for 1/10 second each. The quickness of
the hand deceives the eye and the programs appear to run in parallel.

However, a realistic system is not so simple. Although the programs
will be largely independent, they will need to communicate with each
other from time to time, and if they are using peripheral devices they will
need to communicate with those devices. Thus a program must bs able to
make requests to the executive. This is usually done by a special machine
instruction called a trap or supervisor call (SVC). This transfers control to a



