IRREVERSIBLE THERMODYNAMICS
Theory and Applications

K. S. Farland, T. Farland and S. K. Ratkje



IRREVERSIBLE THERMODYNAMICS
Theory and Applications

K. S. Forland, T. Ferland and S. K. Ratkje

The University of Trondheim
The Norwegian Institute of Technology
Department of Chemistry

JOHN WILEY & SONS

Chichester - New York - Brisbane - Toronto - Singapore



Copyright © 1988 by John Wiley & Sons Ltd.
All rights reserved.
No part of this book may be reproduced by any means, or transmitted,

or translated into a machine language without the written permission of
the publisher.

Library of Congress Cataloging in Publication Data:

Farland, K. S. (Katrine Seip)
Irreversible thermodynamics.

1. Irreversible processes. 1. Fgrland, T. (Tormod)
Il. Ratkje, S. K. (Signe Kjelstrup) IIl. Title.
QC318.17F67 1988 541.3'69 87-25408

’

ISBN 0 471 91706 0

British Library Cataloguing in Publication Data:

Fagrland, K. S.
Irreversible thermodynamics : theory and
applications.
1. Irreversible processes
I. Title Il. Ferland, T. Ill. Ratkje, S. K.
536'.7 QC318.17

ISBN 0. 471 91706 0

Typeset by Photo-graphics, Honiton, Devon.
Printed in Great Britain by Biddles Ltd., Guildford.



PREFACE

\ el w .

Irreversible thermodynamics is an extension of classical thermodyn-
amics to give a unified method of treating transport processes. It
is particularly useful when several interacting transport processes
. occur simultaneously. Simultaneous transport processes, e.g.
transport by diffusioh and electric current or the transport of heat
coupled 1o transport.of-mass or electric charge, are encountered
in many fields of science. These are common phenomena in
different fields such as electrochemistry, chemical engineering,
biochemistry and biophysics, metallurgy and geology.

The book is intended for senior level students, but may also be
useful to others who intend to apply the principles of irreversible
thermodynamigs to their problems. To facilitate understanding, the
basic equations are derived in a simple way using a minimum of
mathematics. Equations of transport are therefore derived for
transport i one direction only. Furthermore, the derivations are
first carried out for very simple systems and then extended to more
complex cases. In order to develop a physical understanding of
the mathematical operations, the quantities used are operationally
defined, i.e. experimental determinations of the quantities are
described or outlined. .

The symbols are in agreement with the [UPAC recommendations
and SI units are used. We, have made efforts to keep the language
simple, avoiding — as far as possible — specialized terminology
in the different fields. .- ; : :

In Part I of the book the theoretical fundamentals are developed
and related to reality by examples. In Part |l the theories are
applied to solve some important probler s within varied fields of
science and technology. The chapters of Part Il can be read
independently of one another. :

xi
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PREFACE

Many colleagues from several countries have been helpful to us
with suggestions and advice leading to improvements in the text.
They are too numerous to be mentioned by name, but we are
grateful to them all for the keen interest they have shown. We are
also indebted to our students who have scrutinized the manuscript
for mistakes and obscurities.
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CHAPTER 1

Introduction

Classical thermodynamics deals with the driving forces for reactions
and with equilibrium. it is well established -as one of the pillars
of the natural sciencas. The theory. of equilibrium, however, is
limited to systems that can be regarded as isolated from the
_environment. lt is not applicable where there:is transport of heat,
electricity or matter across the borders of the system. Qpen systems
with transport across the borders are very familiar. The steady
influx of energy from the sun to the earth counteracts the formation
of equilibrium. Changes and movements are more common than
situatiops .of equilibrium where: no macroscopic change takes
place. Irreversible thermodynam/cs was developed to take care Jf
.non-equilibrium situations. Irreversuble thermodynamics also has
its limitations, and the treatment in this hook is limited to near-
equilibrium situations with microscopic revers:bfhty, that is local -
equilibrium, and linear transport processes.
it is customary to date the beginning of irreversible thermodyn-
amics back to Thomson’s work in 1854 on the thermoelectric
effect, interacting transports of heat and electric charge.! The
consecullve studies of p\'uenomena and development of theory
were, undertaken by some of the:world’s most famous scientists:
Helmholtz, Boltzmann, Nernst, Einstein, o mention just a few.
The papers by Onsager 3 on Reciprocal Relations in Irreversible
Processes, Parts | and Il, in 1931 constituted an mpoft?ntﬁhlestone
in the development of-the theory. In the following decade< the
_theoty ‘was further. developed, and the assumptions behind' the
“theory were scrutinized. Some leading hames in these studies are
Meixner, Prigogine, and de Groot and Mazur.
The main objective of irreversible thermodynamics is to describe
completely and quantitatively interacting. transport processes.
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Simpler problems of interacting transports can be treated without
the use of irreversible thermodynamics, but the unifying theory is an
important tool for organizing more complex problems. Irreversible
thermodynamics gives the set of equations needed to deal
with simultaneous transport processes in a systematic way. The
conditions of a system often imply relations that can reduce the
number of parameters needed tqo describe the. process. The
systematics of irreversible thermodynamics helps to analyse these
relations. Thus the number of independent experiments needed to
study the system can be reduced. Alternatively a consistency check
can -be made by determining the same quantity by different
 methods.

The theory of irreversible thermodynamics is well suited for the
study of transports in electrolyte systems (see Chapter 4). It adapts
itself to electrolyte solutions and to fused salts. The theory is almost
indispensable for transport processes through membranes (see
Chapter 5). The use of the theory for studying biological phenomena
is steadily increasing. With the increasing use of membranes in
technological processes, the characterization of transport par-
ameters and -their interrelation is of interest. Transport of heat
coupled to transport of matter and electric charge (Chapter 6) and
the influence of gravity on transport phenomena (Chapter 7) are
generally better understood by the use of irreversible thermodyn-
amics.

To demonstrate the applicability of irreversible thermodynamics
to a variety of practical problems, some examples are given in
Chapters 8—11. The reader who works with transport problems
may find other applications of the theory.

1.1.-The Dynamic Equilibrium

The second law of thermodynamics gives the fundamental equilib-
rium criterion, the sum of all entropy changes for the system and
the surroundings is equal to zero, dS = 0. For an irreversible
process this sum has a positive value, dS > 0. The equiligrium
state is a dynamic state, where the rates of processes in opposite
directions are equal. When a system is slightly out of equilibrium, *
and it approaches equilibrium, processes in opposite directions

are taking place continuously. The rate in one direction is slightly
higher than the rate in the opposite direction until equilibrium is
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attained and the rates become equal. This description is valid both
for chemical reactions without any coordinates in space and for
| directed transport processes.

The transport processes can be illustrated with an example.
, Consider the electrochemical cell:

(Pt)Cl,(g)|AgCl(s)|Ag(s)

The charge carriers in the solid electrolyte are Ag* ions moving
over interstitial positions. When the cell is open, or the emf of the
' cell is balanced by an outer emf, there is no net current. With no
net current the electric potential over the electrolyte is zero. The
charge carriers are still in motion, but an equal number of steps -
are taken in each direction, and they cancel. The movements of
interstitial Ag* ions can be pictured as going from one.interstitial
position to another over an energy barrier, E, (see Fig. 1.1(a)). No
direction is preferred.

Due to vibrations an Ag* ion in an interstitial position will have
a probability of reaching the top of the barrier proportional to an
exponential function, exp (—E,/kT), where E, is the activation
energy, k is the Boltzmann constant and T is the absolute
temperature. Thére is no net transport in any direction. The rate
of transport to the right, v_,, is equal to the rate of transport to the
left, v._. At equilibrium v, = v_ = v,, where v, can be expressed
as

y, = k, exp (—E/kT) (1.1)

"where k, is a constant.

Figure 1.1(b) shows the situation when the emf of the cell is
not balanced, i.e. a net current passes from left to right. There is
now an electric potential, Ag, between adjacent interstitial
positions, and the height of the barrier is reduced to E, — 4 eAg
for movements to the right, while the barrier is increased to E, +
4 eAp for movements to the left, where e is the charge of an
electron. The net rate of movement from left to right is

v=1u, — u_=k, exp (— E/kT) [exp (}eA@/kT)

— exp (—3eA@/kT)] (1.2)
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Figure 1.1. Motion of an ion from one position to a neighbouring position over
an energy barrier. (a) No electric field. The energy barrier, E,, is equal in both
directions. (b) With an electric field. The energy barrier is decreased by an amount
el in the direction’of the field and increased by the same amount in the opposite
direction.

1.2 The Linear Range of Transport Processes

Equation (1.2) is an exponential equation, and it does not easily
lend itself to treatment by irreversible thermodynamics. For
small electric potentials, however, where }eAp < kT, the
approximation € = 1 + x can be used; v, can also be introduced
from eq. (1.1), and from eq. (1.2) a simplified ' expression is
obtained for the net rate of movement:

v=1y, (e/kNA¢p (1.3)

The exponential rate equation is thus reduced to a linear relation
between the rate, v, and the force, A¢. The force is expressed as
the electrical potential over a distance Ax of molecular dimensions.
This may also be expressed as the ratio Ag/Ax or d¢/dx. Forces
can be of different kinds. Ah example is a change in chemical



