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INTRODUCTTION

Let F be a finite field extension of the p-adic rational field Qp, and
let D be a central F-division algebra of finite dimension n?. These notes
have two principal aims. The first of these is to develop the theory of a

congruence Gauss sum 7(m) attached to an irreducible admissible represent-

2 i . X
ation T of the multiplicative group D' of D. For the second, we assume

*  The final version of this set of notes was prepared while the authors
were visiting the University of Illinois at Urbana-Champaign in the Fall of
1981 as participants in a Special Year of Algebra and Algebraic Number Theory
organised by I. Reiner. The first was on sabbatical leave from King's
College London and was partially supported by the NSF. The second was the
G.A. Miller Visiting Professor. Both would like to thank the University of
I1linois for its hospitality during this period.



that the index n of the division algebra D is not divisible by the residual
characteristic p of F. In this situation, Corwin and Howe [3] have
constructed a bijective correspondence between these representations T and
continuous irreducible representations 0, of degree dividing n, of the Weil
group WF of F. Koch and Zink then took up the subject again, and gave a
more complete account in [10]. Our second aim is then to derive a precise
comparison between the constant W(m) in the Godement-Jacquet functional
equation attached to m and the Langlands local constant W(o) of the
corresponding representation ¢ of wF. We shall see that the root numbers

W(n) and W(o)™/ dim(o)

differ at most by a 4-th root of unity factor which
can be written down explicitly. This enables us to introduce certain (not
entirely canonical) "twists" of the Corwin-Howe-Koch-Zink correspondence
to obtain another correspondence which satisfies in full the postulates of
Langlands' philosophy (see Theorem (11.3.4) below).

The crucial link between these two aims is the fact that the constants
W(m) can be computed in terms of the Gauss sums T(T), just as in the
classical situation of local fields treated in Tate's thesis [15]. (This
holds in full generality: we do not need here the hypothesis that n is
relatively prime to p.)

In describing the correspondence between representations T of D" and
representations o0 of WF when p does not divide n, we mainly follow the
paper of Koch and Zink [10]. However, we have to analyse the separate
stages in more detail. This, together with the necessary representation-
theoretic background, takes up a major portion of the notes. (It should
be noted that, in the main body of the notes, we actually work with a
correspondence between "finite" representations of D" and representations

of the absolute Galois group QF of F, rather than wF. This is for



convenience only, and does not really affect the results. For the
transition to Weil groups, see (5.5) below.)

The new congruence Gauss sums arise as a non-abelian generalisation of
the classical Gauss sums for quasicharacters of local fields. Via class
field theory, the latter can be considered as attached to abelian
representations of wF. This point of view has led to another non-abelian
generalisation, the so-called Galois Gauss sums (see [8], [12], [5], [171,
[4], [6]). Just as our congruence Gauss sums provide a formula for W(rw),
s0 the Galois Gauss sums determine the Langlands constant W(g). In both
cases, the Gauss sum also determinmes the conductor. This parallel between
two kinds of Gauss sum, which in the abelian case reduces to a consequence
of class field theory, is quite analogous to, but in a sense independent of
(and simpler than), the parallel between two kinds of L-functions which is
central to Langlands' philosophy.

Apart from the connections between the two kinds of Gauss sum which
will be established here via the correspondence between representations,
there are - in full generality - some startling similarities in their
properties, e.g. as regards congruence behaviour and Galois action:
compare our §2 with [12] or [6]. Nevertheless, in some ways, they are
objects of two essentially different sorts. A congruence Gauss sum is
given quite explicitly as the eigenvalue of a certain scalar operator
attached to a representation which is necessarily irreducible. On the
other hand, the Galois Gauss sums should be viewed as the values of a
certain homomorphism of the additive group of virtual characters, which
possesses important Frobenius induction properties. Moreover, one of the
deepest results on Galois Gauss sums asserts that, at least in the tame

case, this homomorphism is essentially a group determinant (see [17]).
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In another direction, congruence Gauss sums can be defined in the
context of arbitrary p-adic simple algebras (of finite dimension). Here,
however, a number of new phenomena come into play, and these demand a
separate treatment. It is clear to us that many of the results and
techniques of this paper apply in the broader set-up, but many of the
detdils remain to be worked out.

In connection with this topic, the work of Lamprecht should be
acknowledged. 1In 1957, he introduced Gauss sum matrices associated with
representations of the multiplicative group of a finite ring. Doubtless,
our congruence Gauss sums could be defined as arising from a specialisation
of Lamprecht's matrices. Of course, such a specialisation was necessary in
order to get objects with the strong arithmetic properties we need. In
particular, one must remember that the Godement-Jacquet functional equation
was unknown at the time of Lamprecht's papers [11].

We now give a brief survey of the contents of the individual sections.
§1 is introductory: it recalls the basic concepts and fixes some notation.
In §2, the theory of congruence Gauss sums is developed. Only a part of this
section is needed in the remainder of the present notes. The Gauss sum form
of the functional equation is established in 83. In §4, we show, without
as yet any restriction on n, that for abelian representations the Godement-—
Jacquet constant and the classical local constant for the centre essentially
coincide. Much of the material of 84 has already appeared in the different
context of [1]. It was originally written for this work, and we retain it
for the sake of completeness.

From §5 on, we assume that n is not divisible by p. 85 itself is a
survey of [10], and elaborates the division of the Corwin-Howe correspond-

ence into separate stages. 856 and §7 give more detail, and contain the
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basic Gauss sum computations. An irreducible representation T of Dx is
determined by an abelian representation Y of Ax, for a certain subalgebra
A of D. At the end of 87, we have enough information to compare W(T) and
W(x), except, in one case, for an undetermined sign. To dispose of this,
we need a detour into abstract representation theory (in §8), followed by

a laborious calculation in §9. The character X is given by a character ¢
of the centre, K say, of A. The relation between W(x) and W(¢) has already
been worked out in 84. The representation O of wF corresponding to T is

then induced from ¢ (viewed as a character of W, via class field theory).

K
One knows that W(¢) and W(o) differ by a certain "induction constant"
which is a 4-th root of unity depending only on the field extension K/F.
We work out these constants explicitly in 8§10, except, in one case, for a
sign, which the reader can look up in [6]. In §11, we assemble all the
partial results to get the relation between W(0) and W(m). 5

It was already known that the correspondence between representations
of Dx and WF given in [3] and [10] was inconsistent with Langlands'
philosophy in one important respect concerned with the relation between
the restriction w, of T to the centre Fx and the determinant character
det(0) of 0. Our root number calculations give another inconsistency.
The explicit formulas of §11 make it clear that these two problems are
aspects of the same phenomenon, which again arises when one compares the
field-theoretic properties of the corresponding Gauss sums. One is then
led to try to modify the correspondence by '"twisting'" the various steps of
the construction by tame characters of the fields involved. We pursue this

idea systematically in 812. We exhibit one modified correspondence, which

seems to be the simplest available, but which cannot in the present context
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be called canonical. However, it does at least provide an example of a
bijection between representations of D" and of wF which satisfies in full
the postulates of Langlands' philosophy.

Finally, we would like to thank Mrs. Joan Bunn for retyping this

manuscript for publication with her usual efficiency and style.
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§1 Arithmetic of local division algebras

(1.1) We start by fixing some of our basic notations, and recalling a
few elementary facts about division algebras over local fields. Everything
in this section is both well-known and easily verified: ([13] and [18] are
convenient general references.

Let F be a non-Archimedean local field of characteristic zero and
residual characteristic p. Thus F is a finite field extension of the p-adic

rational field Qp. We let

= the valuation ring in F,

]
I

= the maximal ideal of Op>

£
|

(1.1.1)
F = gF/gF, the residue class field of F,

Q=9 = NgF = |F|, the cardinality of F.

. X . . . s
We write R for the group of invertible elements of a ring R. The unit

X . .
group o has a filtration

S 2
op 2 1 + By 2 1 = Bp 2 -t

and we denote these subgroups by

R _ i .
(1.1.2) Up(F) = o5, U(F) =1+ Bgps 12 1.
We also write
(1.1.3) Vi F +>2



for the canonical (surjective) valuation of F, and

—-u (x)
(1.1.4) e |l 5 = q;1F , x €F.

If we have a finite field extension E/F, we use analogous notations,

and write NE/F’ TrE/F for the relative norm and trace respectively.

The field F has a canonical continuous additive character u? defined

by

(1.1.5) Y = wQP . TrF/QP ,

where ¢b is the composition of canonical maps
P

X
Qp > QP/ZP ~Q/z ~C

the last of these being x H-eznlx. The pairing (x,y) H-wF(xy), X,y € F,

in nondegenerate, and may be used to identify the locally compact abelian
group F with its Pontrjagin dual F.

It is useful to note that the largest g¥—1attice contained in the

=1

. = s .
kernel of wF is D =D , the inverse of the absolute different of F.

F --F/QP
(1.2) Now let D be a finite-dimensional central F-division algebra,
. . . X
with, say, n% = dlmF(D). The homomorphism nvF : F > Z extends to a

surjective homomorphism

(1:2.1) v, : D > 2



which is indeed a valuation. The set
(1.2.2) 9y = {x€D:vyx) >0}

is a ring, with the usual convention vD(O) = o, and it is the unique

maximal order in D. This ring has a unique maximal ideal
(1.2.3) By = {x €D : vD(x) > 1},

and moreover any left (or right) gD—lattice spanning D over F is of the

form
i ) .
ED = {x€D: vD(x) > i},

for some uniquely determined i € 2. In particular, it is a 2-sided
fractional ideal of QD'

The residue class ring

(1.2.4) D=o0.

%'Ep

is a field, and indeed an extension of F of degree n.

We again have a chain of subgroups

. X
each of them compact, open, and normal in D , and we denote them by



X
(1+2.5) Up® =9p, U,(D) =1+

We have canonical isomorphisms

=X
UO(D)/UI(D) =D,

o1, i+
U, (/u,, (D) = gD/=ﬂ

and therefore, for i > 1, Ui(D)/Ui+1(D) is an elementary abelian p-group

of order q;.

We write

(1.2.6) Nrd : D -~ F , Trd

for the reduced norm and trace respectively.

the notation

(1.2.7) NA=|0/Al,
for an Q0 -ideal A. Thus
i ni :
= >
N P[ Qg » 12 0.

It is also convenient to have

We frequently omit the D's from these notations when there is no danger

of confusion.

The definition



(1.2.8) W = Y © Trdy

provides a canonical continuous additive character of D, and the pairing

DxD ¢ given by
(1.2.9) Gy) g (xy)

is nondegenerate. It may be used to identify D with its Pontrjagin dual D.
-1
The largest QD-lattice contained in the kernel of WD is the inverse ED

of the absolute different of D. One verifies easily that

1

== n_
(1.2.10) D, = By D

, we

Now let i,j be integers, with 1 <i < j < 2i. Then, for x,y € E;

have
(l+x)(1+y)51+x+y(mod£é).

It follows that the group Ui(D)/Uj(D) is abelian, and canonically
isomorphic to Pi/Pj

'3

We can also use the character wD to obtain a very useful description
of the Pontrjagin dual (Ui/Uj)A of the finite abelian group Ui/Uj' For,
-1 =3

] 3

let vy € 2D Eﬂ , and consider the map

i
BY : 1+ x H'wD(Yx), x € Eﬂ.

This is a homomorphism Ui -+ € which is trivial on Uj' Moreover, SY is the



