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§ 1. Lecture Notes aim to report new developments - quickly, informally, and at
a high level. The texts should be reasonably self-contained and rounded oft. Thus
they may, and often will, present not only results of the author but also related
work by other people. Furthermore, the manuscripts should provide sufficient
motivation, examples and applications. This clearly distinguishes Lecture Notes
manuscripts from journal articles which normally are very concise. Articles
intended for a journal but too long to be accepted by most journals, usually do not
have this “lecture notes” character. For similar reasons it is unusual for Ph. D.
theses to be accepted for the Lecture Notes series.

§ 2. Manuscripts or plans for Lecture Notes volumes should be submitted
(preferably in duplicate) either to one of the series editors or to Springer- Verlag,
Heidelberg . These proposals are then refereed. A final decision concerning
publication can only be made on the basis of the complete manuscript, but a
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estimated length, a bibliography, and one or two sample chapters - or a first draft
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1 Introduction

In this work we are going to discuss polynomial approximation with weighted
polynomials of the form w™ P,,, where w is some fixed weight and the degree of
P, is at most n. We emphasize that the exponent of the weight w” changes with
n, so this is a different (and in some sense more difficult) type of approximation
than what is usually called weighted approximation. In fact, in the present case
the polynomial P, must balance exponential oscillations in w™. To have a basis
for discussion let us consider first an important special case.

Let w(z) = exp(—c|z|*), ¢ > 0 be a so called Freud weight. H. N. Mhaskar
and E. B. Saff [34] considered weighted polynomials of the form w™ P,, where
the degree of P, is at most n. They found that the norm of these weighted
polynomials live on a compact set S,,, i.e. for every such weighted polynomial
we have

llw™ Pallg = [|w" Palls.,

furthermore, w" P, /||w" Py||s, tends to zero outside S,,. They also explicitly
determined Sy, :
(1.1) Sy = [—7(1,/“6'_1/",7;/“(1/“]
where i .
v~ « 1 a 1
= [ L dv=T(Z)(2)/(2(2 4+ =
Vo= [ =g do = NGIGIENG + )

(see Section 3 below).

One of the most challenging problems of the eighties in the theory of orthog-
onal polynomials was Freud’s conjecture (see Section 3) about the asymptotic
behavior of the recurrence coefficients for orthogonal polynomials with respect
to the weights w. The solution came in three papers [16], [29] and [27] by D. S.
Lubinsky, A. Knopfmacher, P. Nevai, S. N. Mhaskar and E. B. Saff. The most
difficult part of the proof was the following approximation theorem ([29]).

Theorem 1.1 If wa(t) = exp(—7vaq|t|*), @ > 1 ts a Freud weight normalized so
that Sy, = [—1,1], then for every continuous f which vanishes outside (—1,1)
there are polynomaials P, of degree at most n, n = 1,2,... such that WP,
uniformly tends to f on the whole real line.

Let us mention that it follows from what we have said about w}, P, tending
to zero outside [—1,1], if f can be uniformly approximated by w’ P, then it
must vanish outside [—1, 1].

In the next section we shall present a rather elementary and direct proof for
Theorem 1.1. Then, in Section 3, we shall derive a short proof for the strong
asymptotic result of Lubinsky and Saff for an extremal problem associated with
Freud weights. With this we will provide a self contained and short proof for
the most important result of the monograph [28].

In Section 4.1 we shall considerably generalize Theorem 1.1 and solve the
analogous approximation problem for a large family of weights. In earlier works
the approximation problem was mostly considered for concrete weights such as
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Freud, Jacobi or Laguerre weights. The generalization given in Theorem 4.2
is the first general result in the subject and is far stronger than the presently
existing results (e.g. it allows S, to lie on different intervals). It also solves
several open conjectures. However, the new and relatively simple method is
perhaps the most important contribution of the present paper (Lubinsky and
Saff themselves generalized Theorem 1.1 in a different direction, see e.g. [28]
and Section 12). We shall first restrict our attention to the important special
case given in Theorem 1.1 in order to get a simple proof for the above mentioned
asymptotics (and hence for the so called Freud conjecture) and in order not to
complicate our method with the technical details that are needed in the proof
of Theorem 4.2 (see Section 5).

In the third part of this work we shall present a modification of the method.
This will allow us to consider varying weights in the stronger sense, that we
shall allow even w, to vary with n. Recently a lot of attention has been paid
to such varying weights which are connected to some interesting applications to
be discussed in Chapter IV.

In essence our approximation problem can be reformulated as follows: how
well can we discretize logarithmic potentials, i.e. replace them by a potential
of a discrete measure which are the sums of n (n = 1,2,...) equal point masses
(see the discussion below for the relevant concepts). The usual procedure is the
following: divide the support into n+ 1 equal parts with respect to the measure
and place masses 1/n at these division points. This approach has proven to
be sufficient and useful in many problem. However, the process introduces
singularities on the support which has to be avoided in finer problems. Our
method in its simplest form is a modification of the previous idea. We also
divide the support into n equal parts with respect to the measure, but we use
the weight points of these parts instead of their endpoints for placing the mass
points to, then we wertically shift this discrete measure by an amount L,/n
where L, — oo is appropriately chosen. This modification will result in a
dramatic increase in the speed of approximation.

Kok kK kK kK kK K Kk

In the rest of this introduction we shall briefly outline the results from the
theory of weighted potentials that we will need in the paper.

We shall use logarithmic potentials of Borel measures. If u is a finite Borel
measure with compact support, then its logarithmic potential is defined as its
convolution with the logarithmic kernel:

UM (z) = /logl—;—i-ﬂ dp(t).

Let X be a closed subset of the real line. For simplicity we shall assume that
3 is regular with respect to the Dirichlet problem in C\ R”, by which we mean
that every point zo of ¥ satisfies Wiener’s condition: if

E, ={zeX|27" ' < |z —zo| < 27"},
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then
(1.2)

S e
2 log1/cap(Bn)
(see the following discussion for the definition of the logarithmic capacity). In
particular, this is true if ¥ consists of finitely many (finite or infinite) inter-
vals. This regularity condition is not too essential in our considerations, but it
simplifies some of our proofs.

A weight function w on X is said to be admissible if it satisfies the following
three conditions

(i) w is continuous;
(1.3) (i) Xo:={z € T|w(z) > 0} has positive capacity;

(iii) if £ is unbounded, then |z|w(z) — 0 as |z| — oo, z € T.

We are interested in approximation of continuous functions by weighted poly-
nomials of the form w™ P,,. To understand the behavior of such polynomials we
have to recall a few facts from [34] and [35] about the solution of an extremal
problem in the presence of a weight (often called external field).

We define @Q = Q. by
(1.4) w(z) =: exp(—Q(z)).

Then Q : ¥ — (—o00,00] is continuous everywhere where w is positive, that is
where () is finite.

Let M(X) be the set of all positive unit Borel measures ¢ with supp(p) C X,
and define the weighted energy integral

(1.5) Iu(p) = / log[|z — t|w(z)w(t)] ™~ du(z)du(t)
// [log + Q(z) + Q(t)] du(z)du(t).

The classical case corresponds to choosing ¥ to be compact and w =1 on X: If
u is a Borel measures with compact support on R, then its logarithmic energy
is defined as

1) = [UH(e)auz) = | [ 1og —rdu(tydu(z)

If K is a compact set, then its logarithmic capacity cap(K) is defined by the
formula

(1.6) log — := inf {I(u) | € M(K)}.

1
ap(K)
Now the capacity of an arbitrary Borel set B is defined as the supremum of
the capacities of compact subsets of B, and a property is said to hold quasi—
everywhere on a set A if it holds at every point of A with the exception of points
of a set of capacity zero.
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The equilibrium measure (see [51] or [17]) wg of K is the unique probability
measure wg minimizing the energy integrals in (1.6). Its potential has the
following properties:

1
. ek < _
(1.7) L (z)_logcap(K) for 2€C,
(1.8) U“K(z) = log capl(I’) for quasi-every z € K.

If K is regular (which means that its complement C \ K is regular with respect
to the Dirichlet problem), then we have equality for every z in (1.8).

Returning to the general case of weighted energies, the next theorem was

essentially proved in [34] and [35].

Theorem A Let w be an admissible weight on the set ¥, and let
(1.9) Vi = inf{ Ly ()| 4 € M(E)}.

Then the following properties are true.
(a) Vi 1is finite.
(b) There exists a unique p,, € M(X) such that

Ly (pw) = Vi

Moreover, p,, has finite logarithmic energy.

(c) Sy :=supp(py) is compact, is contained in Xg (c.f. property (ii) above),
and has positive capacity.

(d) The inequality

U (2) 2 ~Q() + Vo = [ Qou = ~Q(2) + o

holds on L.
(e) The inequality
Uk(2) < =Q(2) + Fu

holds for all z € S,,.
(f) In particular, for every z € Sy,

Utw(z) = =Q(2) + Fy.

The proof is an adaptation of the classical Frostman method. In fact, in
(34] and [35] property (d) was proved to hold for quasi-every z € £. But the
regularity of ¥ implies that then the set of points where

[ 108 (0 + Q) 2 Vo — [ Qi = P
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holds is dense at every point of ¥ in the fine topology (see [12, Chapter 10] or
(17, Chapter III]), hence the inequality in question is true at every z € ¥ by the
continuity of @ (where it is finite) and the continuity of logarithmic potentials
in the fine topology.

The measure pu,, is called the equilibrium or extremal measure associated
with w.

Above we have used the abbreviation

Fy 1=V —/Qduw

for this important quantity.

We cite another theorem of H. N. Mhaskar and E. B. Saff [34, Theorem 2.1],
which says that the supremum norm of weighted polynomials w™ P, lives on S, .
Let us agree that whenever we write Py, then it is understood that the degree
of P, is at most n.

Theorem B Let w be an admissible weight on ¥ C R. If P, is a polynomial
of degree at most n and

(1.10) |w(z)"Pa(2)| <M for 2z €Sy,
then for all z € C

(L11) |Pa(2)] < Mexp (n(~U*(2) + Fy)).
Furthermore, (1.10) implies

(1.12) |lw(z)"Pp(z)| < M for z€X.

This theorem asserts that every weighted polynomial must assume its max-
imum modulus on S,,. Soon we shall see that S, is the smallest set with this
property.

Theorem B is an immediate consequence of the principle of domination (see
the proof of Lemma 5.1 in Section 5).






Part I
Freud weights

In the first part of the paper we shall consider exponential type (also called
Freud) weights. We shall illustrate our method on them. The other purpose
of this part is to give a self-contained and relatively short proof for the strong
asymptotic results of Lubinsky and Saff [28].

2 Short proof for the approximation problem
for Freud weights

In this section we give a short and simple proof for Theorem 1.1.

Let Q(z) = valz|®, so that wa(z) = w(z) = exp(—Q(z)). First we simplify
the problem.
I. Obviously, it is enough to consider f’s that are positive in (—1,1) and less
than, say, 1. Furthermore, we know that 1t is sufficient to approximate on, say,
(-2, 2], because w" P, tends to zero outside [—3/2,3/2] (see Theorems A and B
from the introduction and the formula (3.7) in Section 3).

I1. It is enough to approximate by the absolute values of weighted polynomials.
In fact, if w"|P,| uniformly tends to \/f, then w?"|P,|? uniformly tends to f,
and here |P,|? is already a real polynomial. This shows our claim when the
degree n is even. For odd degree one can get the statement by approximating
f/w with even degree polynomials and then by multiplying through by w.

II1. Tt is enough to show the following: for every € > 0 and L > 0 there is a
continuous function gy and for every large n polynomials @, of degree at most
n such that with Jo :=[-1+¢,1-¢]

(2.1) w"(z)|Qn(z)| = exp(gr(z) + Rr(z)), z e/,

where the remainder term Ry (x) satisfies |R(z)| < C¢/L uniformly for z € J,
with some C, > 1 independent of L, and for every z € [—3, 3]

(2.2) w" (2)|@n(z)| < Dn?,

where D = Dy . is a constant independent of n.

In fact, suppose this is true, and apply it to w* instead of w with some
A > 1. The corresponding extremal support is [—f8y,0x] with 6y, = A~1/¢
tending to 1 together with A, hence, by choosing A > 1 close to 1 and then
applying the statement above to a smaller € if necessary, we can see that there
are polynomials Q[/x) of degree at most [n/)] such that with some g and Rr
as above

w™(2)|Qpm/a)(2)| = exp(gr(z) — (n = A[n/A])Q(z) + Re(x)), z€J,
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and

w™(2)|Qn/ay(z)| < Din®, T € [-2,2].
Since 0 < n — A[n/A] < A, and the family of function {g; — sQ |0 < s < 1}
(considered on [—1+¢,1—¢]) is compact, for every large n there are polynomials
Sn—[n/x) of degree at most n — [n/A] such that

|Sn—[n/a)(2) = f(z) exp(—gr(z) + (n = A[n/A])Q(z))|
<exp(—gr(z) + (n = Aln/A)Q(z))/L,  z € J2,
[Sn—tn/a1(2)| < f(z)exp(—gr(z) + (n — A[n/A])Q(z)), = € Jac\ J,

and
(23) |S —[n/)\](z)l S n—41 T E [_212]\‘](

Now we set P, = Q[n/A)Sn—[n/A], Which has degree at most n. If n > 0 is
given, then choose first € > 0 so that the maximum of f outside J,, is smaller
than 7, then chooose A > 1 as above, and finally choose L large enough to have
C¢/L < 1. Then our estimates show that for sufficiently large n the difference
|w™|P,| — f]| is at most 37 on [—2,2], and this is what we need to prove.

IV. Thus, we only have to verify (2.1) and (2.2).
Let us consider the so called Ullman distribution pu,, given by its density
function

(2.4) v(t)

1 w1

a

- /|:| Jo—p du.

It is well-known (see the computation in Section 3, especially (3.6) and (3.7))
that w(z) and exp(U#*(z)) differ on [—1, 1] only in a multiplicative constant,
and elsewehere the weight w(x) is smaller than exp(U*#*(z)) times this constant.
Hence it is enough to show (2.1) and (2.2) with w = w, replaced by exp(U#w).
In doing so we are going to use the standard discretization technique for loga-
rithmic potentials (c.f. [42] and [28]) with some modifications, but exactly these
modifications permit good approximation.

Let v be the density of the Ullman distribution p,, (see (2.4)), and let us
divide [-1,1] by the points —1 =ty < ¢; < ... < t, = 1 into n intervals ;,
j=0,1,...,n — 1 with p,(I;) = 1/n. Since v is continuous and positive in
(—=1,1), there are two constants ¢, C' (depending on €) such that if I; N Ja # 0,
then ¢/n < |I;| < C/n.

Let
1
3] ~—m/l]td#(t)="/1_td#(t)

7

be the weight point of the restriction of y, to I;, and set
Qn(t) = [J(t—iL/n-&).
j

We claim that this choice will satisfy (2.1) and (2.2) (with w replaced by
exp(U#*)).
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First of all let us consider the partial derivative of U#¥(z) at z = = + 1y with
respect to y:

(2.5) 6[’_;;@ . /_1 (z_t++y2v(t)dt p—

as y — 0 — 0 uniformly for z € J¢ by the properties of the Poisson kernel. This,
and the mean value theorem implies that

L L
(2.6) Ukw(z) — UPs(z — iL/n) = "+(x) +o (;)
uniformly in ¢ € J.. The same argument shows that
(2.7) U (@) ~ UR (& — iL/m)| = O(5)

uniformly for ¢ € R..

Actually, (2.5) and (2.6) uniformly hold on R because v is continuous (even
at 1) and vanishes outside [—1, 1]. We shall use this fact in Section 3, but for
the present purposes we keep the above formulation because in Section 4.1 we
shall consider weights the density of which is not necessarily continuous around
the endpoints, and it will be easier to point out the necessary changes if we
work with (2.6) and (2.7).

Let pn(t) = pu(t — iL/n), i.e. we are defining p, on the interval [—1,1] +
iL/n, which is obtained by shifting [—1, 1] upwards on the plane by the amount
L/n. Then the preceding two estimates tell us how far apart the two potentials
U#» and U#» can be on [—1, 1] and on R. Next we estimate for z € J,, z € I},

(2.8) |log |@n(z)| + nU*»(2)|

- 'in/l (log |z — iL/n —t| — log |z — iL/n — &) dpu(t)|
i=0 b

Here the integrand is

§ —t _ § —t
10g1+z—iL/n—£j = Rlog 1+:c—iL/n—£,- :
Since the absolute value of
& —t ‘
¢ —il/n—¢§’ tek

1s at most 1/2 for large L (check this separately for |{; — t| < C'/n and for the
opposite case which can only occur if I; N J.2 = 0 and hence |z —§;| > €/2 while
|I;| < €?), it easily follows that then the last expression can be written in the

form 1 13 |2
- & -0% =g O (i tem):
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and since the integral of the first term on I; against du,(t) is zero because of
the choice of &;, we have to deal only with the second term. For it we have the
upper estimate

(C/n)
o ((L/n)z (G - jo)/n>2)

|I;]?
0 <_€,_2_

otherwise (recall that = € J.), hence we can continue (2.8) as

if ; N Jez # 0 and

C

-9 €

<ClzL2 2k2+Clmjax|Ij|”§: ¢|Ij|€ =23
2 2=

if n is sufficiently large.
Now

log |Qn ()| + nU**(z) = (log|@n(2)| + nU*" (2)) + (nU**(2) — nU*(2))

and here, by the preceding estimate, the first term is at most C¢/L in absolute
value, while by (2.6) the second term is 7v(z)L + o(L) uniformly in z € J, as
n — oo . This gives (2.1) (recall that we are working with exp(U#*) instead of
w).

The proof of (2.2) is standard: using the monotonicity of the logarithmic
function we have for example for z € I;;, jo < j < n — 1 the inequality

log |z —iL/n — &j| Sn/ log |z — iL/n — t|dpy(t),
T4

and adding these and the analogous inequalities for j < jo together one can
easily deduce the estimate

(2.9) log |@Qn(z)| + nU#"(z) < 3logb +
Jo+1
+ E /log duw(t) < 3logbn/L
J=jo—1

for every z € [—3,3]. This and (2.7) prove (2.2).

3 Strong asymptotics

The theorems of this section are not new, they can be found in the monograph
[28] by D. S. Lubinsky and E. B. Saff. We closely follow many steps from [28],
but we substitute the approximation part of the proof with the simple method
of Section 2 which allows us to make shortcuts and simplifications, thereby



