INTRODUCTION TO

e

™\ A e oy W f? Ao 3?)
5 8565836 | M

LD §
eV g

INTRODUCTION
TO
ADA

T

L :
E8565836

David Price

Prentice-Hall, Inc.
Englewood Cliffs, N.J. 07632

T T L

Library of Congres: Catabgi;lg b, Pubhcanon Data

Price, David, 1961- '; Fif ,Ql 3

Introduction to Ada: : ?, : 2

2] e

Includes index. o

1. Ada (Computet pmgram ipnguage) 1. Title.
QA76.73.A35P74 1984 5 ‘ 001.64'24 83-16082
ISBN 0- 13-477653'-4
ISBN m's.-;yw’ﬂ_ powh *

O R

Editorial/production supervision and
interior design: Aliza Greenblatt

Cover design: Jeannette Jacobs

Manufacturing buyer: Gordon Osbourne

© 1984 by Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

ISBN 0-13-47?b4b-1 {P}
ISBN 0-13-47?7653-4 {C}

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
EDITORA PRENTICE-HALL DO BRASIL, LTDA., Rio de Janeiro
PRENTICE-HALL CANADA INC., Toronto

PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo

PRENTICE-HALL OF SOUTHEAST ASIA PTE. LTD., Singapore
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

PREFACE

This book is meant to serve as an introduction to the programming language
Ada. The reader is not presumed to have extensive programming experience or
advanced mathematical training. Only one prerequisite is essential: an interest in
the Ada language. The aim of this book is to guide the reader through Ada pro-
gramming concepts with a minimum of confusion or intimidation.

Though the development of Ada was sponsored by the U.S. Department of
Defense, Ada is not limited to a handful of specific applications. It is, in fact, a
powerful general-purpose tool. In many ways, it is a proper superset of other popular
languages. At the time of its introduction, the uses projected for it ranged from
controlling small computers embedded in machinery to maintaining the records of
large businesses. A working knowledge of Ada, then, is likely to be an important
stock-in-trade among professional programmers for many years to come.

Some aspects of the language may appear to be idiosyncratic or even cum-
bersome at first glance. They will be especially evident in the early chapters of this
book, where most of the example programs will be quite small. The reason behind
them lies in the fact that Ada is designed to simplify the production of large
programs. Since the complexity of a program increases rapidly as the program
becomes larger, Ada provides a number of facilities for dividing programs into
smaller modules. These facilities help make Ada programs easier to read, to write,
and to modify.

At this writing, most books about Ada are based on outdated descriptions of
the language. This book, however, was written to be consistent with the draft Ada
standard released in July 1982. Though minor editorial changes may follow in later
standards, substantial revisions to this definition of the language are unlikely. Hence,
the descriptions of Ada’s features in this book are not in danger of becoming
obsolete.

I am grateful to Charles Wetherall of Bell Laboratories for many insightful
comments. (The remaining defects of the book are, of course, my responsibility.)

vii

viii Preface

I am also grateful to James F. Fegen, Jr. and his associates at Prentice-Hall for
their support of this project. Finally, I am grateful to my family and friends for
their sympathetic patience.

DAVID PRICE
Midlothian, Virginia

Go
(W]
(B
<t
o
(V]
oo

CONTENTS

PREFACE

Fundamentals
1.1 Some short programs in Ada 1 1.2
expressions 4 1.3 Object declarations 7
1.4 Input and output 9

Conditional Execution

2.1 Boolean expressions 12 2.2 Branching 16
2.3 Looping 20 2.4 Counted looping 23

2.5 Exceptional transfer 25

Type Declarations
3.1 Enumeration types 27 3.2 Subtypes 30
3.3 Derived types 32 3.4 Type attributes 34

Other Numeric Types

4.1 Floating point types 37 4.2 Fixed point
types 39 4.3 Based numbers 471

4.4 Formatting numeric output 42

12

27

37

10

11

Contents

Arrays 44
5.1 Constrained array declarations 44

5.2 Unconstrained array declarations 48

5.3 Aggregates and slices 50 5.4 String

variables 54

Records 61
6.1 Invariant records 61 6.2 Size-variant
records 64 6.3 Type-variant records 67

Subprograms 70
7.1 Function subprograms 70 7.2 Procedure
subprograms 73 7.3 Scope and visibility 76

7.4 Subprogram overloading 78

Access Types 82
8.1 Scalar type allocation 82 8.2 Composite

type allocation 84 8.3 Stacks 87 8.4 Lists

and trees 90

Packages 96
9.1 Package declarations 96 9.2 Private types

and deferred constants 99 9.3 Limited private

types 102 9.4 Library packages 103

9.5 Benefits of isolation 105

Exceptions 108
10.1 Predefined exceptions 108 10.2 Handling

an exception 109 10.3 Raising an exception 111

10.4 Exceptions and robustness 113

Generic Declarations 115
11.1 Instantiation and formal types 115

11.2 Type matching 118 11.3 Subprogram

matching 121

Contents

12

Files

12.1 Text file formatting 124 12.2 File
management 126 12.3 Sequential file
operations 129 12.4 Direct file operations 131
Appendix: Reserved Words

Appendix: ASCII Character Set

Appendix: Library Package STANDARD

Appendix: Library Package TEXT__IO

Index

124

134

135

138

143

149

1

FUNDAMENTALS

1.1 SOME SHORT PROGRAMS IN ADA

Suppose we wanted to write a program in Ada for multiplying a pair of numbers.
What would the completed program look like? This is obviously not the sort of
problem to which a programmer would devote a great deal of attention in practice,
but it will suit our purposes here quite well. In this section we will examine three
programs for multiplying numbers; we will use these programs to become acquainted
with the style and structure of the Ada language.

Example 1.1

with TEXT__I10; use TEXT__IO;
procedure FIRST _MULTIPLY is
I1J: INTEGER;
package INT IO is new INTEGER__IO(INTEGER);
use INT__IO;
begin
I:=17;
J:=60;
PUT(I*J);
end FIRST _MULTIPLY ;

The program shown in example 1.1 prints the product of 17 and 60. The lines
started by the words with, package, and use are included for “housekeeping” pur-
poses; we will return to them in section 1.4. Aside from housekeeping, the program
has three parts: the header, the declarations, and the body. The header simply
indicates the program name. (This program has been given the name FIRST__
MULTIPLY.) The declarations list the programmer-defined entities that will be
used inside the program. In this program, the names I and J are declared to represent
integer variables. Finally, the body of the program lists the instructions that the
computer will follow in executing the program.

In the header line, the name of the program is enclosed by the words procedure

2 Fundamentals Chap. 1

and is. These words are called reserved words in Ada because they are reserved
for a particular purpose. The word procedure, for instance, indicates that we are
reading the header line. Other reserved words are set aside for other situations.
Although no typographical distinction is needed in an actual program, reserved
words appear in lower case throughout this book to make the sample programs
more readable.

Each variable in an Ada program is associated with a data type. The data
type of a variable indicates, as you would expect, the type of data that the variable
can hold. In this program, I and J are declared to have the type INTEGER. A
variable of type INTEGER can store one integer number. In later chapters we will
use data types that can represent other forms of data, such as rational numbers or
matrices. Until then, our sample programs will use variables of type INTEGER.

Like the program name, the program body is surrounded by a pair of reserved
words. The reserved word begin precedes the body; the reserved word end follows
it. The first two lines of the program shown in example 1.1 assign values to the
variables I and J. Statements in this form are called assignment statements. The
two-character symbol ‘:=" is called the assignment operator.

The final statement in the body of this program is a PUT statement. PUT is
a predefined “subprogram” that accepts a value and prints it. In this case, PUT has
been given the expression I*J. When the PUT statement is reached, this expression
will be evaluated; the current values of the variables will be substituted where they
appear. Since I and J will equal 17 and 60 when the PUT is reached, the value of
I*J will be 17%60, or 1020. Hence, the value 1020 will be printed.

Example 1.2

with TEXT__IO; use TEXT__IO;

program SECOND__ MULTIPLY is
IJ,PRODUCT : INTEGER;
package INT__ IO is new INTEGER__IO(INTEGER);
use INT I0;

begin
I:=17;
J:=60;
PRODUCT:=1*J;
PUT(PRODUCT) ;

end SECOND__MULTIPLY ;

The program shown in example 1.2 illustrates the use of expressions in
assignment statements. When the third assignment is encountered, PRODUCT will
be assigned the value of the expression. Any valid expression can appear in the
right-hand part of an assignment statement, as long as both sides of the assignment
have the same data type. For instance, if the variable on the left of the assignment
operator is of type INTEGER, then the expression on the right should yield a value
of type INTEGER. (We discuss the other arithmetic operations available for use
with integers in the following section.)

The names that can be chosen for variables are subject to some constraints.
Program names are subject to these constraints as well. In fact, variable names and

Sec. 1.1 Some Short Programs in Ada 3

program names fall into the same lexical category: both are examples of identifiers.
Here are the rules governing identifiers:

[a—y

The first character of an identifier must be a letter.

2. Subsequent characters of an identifier may include letters, digits, and under-
scores.

An identifier can have any number of characters.

4. A programmer-declared identifier cannot conflict with a reserved word. (Ap-
pendix A gives a list of Ada’s reserved words.)

w

Here are some valid identifiers:

MY_NAME

Number

X

Count3

NEXT LINE_ OF_ TEXT

Here are some invalid identifiers:

16BASE - -begins with a digit
Name&Age - -contains an invalid symbol

Notice that the fourth rule disallows variable names like BEGIN or END,
which are already reserved by Ada. Importantly, differences in upper case and
lower case letters do not make identifiers distinct from one another. Hence, the
identifiers PAGE, Page, and pAGe are treated as if they referred to the same entity.
All other distinctions are significant, however. The identifiers BIRTH__DAY and
BIRTHDAY, for instance, are distinct because one has an underscore and the other
does not.

Example 1.3

with TEXT__IO; use TEXT__IO;

procedure THIRD__ MULTIPLY is
1,J,PRODUCT : INTEGER ;
package INT_ IO is new INTEGER__IO(INTEGER) ;
use TEXT_ IO, INT I0;

begin
GET(I); - -read the first number
GET(J); - -read the second number
PRODUCT:=1*d; - -multiply them
PUT(PRODUCT) ; - -print the result

end THIRD__MULTIPLY ;

The program shown in example 1.3 introduces two additional features of the
language. First, the statements in the body are annotated with comments. A comment
has no effect on program execution; its purpose is to make the program easier for
a human reader to understand. To place a comment in an Ada program, we simply
precede it with a pair of hyphens. A comment can be placed on the same line as

Fundamentals Chap. 1

a program statement or on a separate line altogether. Since the characters following
the hyphens are ignored, a comment cannot be followed by another statement on
the same line. For instance, the assignment that appears in the comment below will
not be executed:

--now we willadd. X:=56+ 3;

The second feature introduced in example 1.3 is the GET statement. Like
PUT, GET is a predefined subprogram that can be invoked within another program.
It accepts a value from the user and places the value in the specified variable. In
example 1.3 it is used to fetch values for I and J.

The use of GET obviously makes THIRD__MULTIPLY far more flexible
than SECOND__MULTIPLY. The latter can calculate the product of only one pair
of numbers, while the former allows the user to enter a new pair each time the
program is run. We will return to the subject of input and output in section 1.4
and again in later chapters.

Before going further, we should note the use of semicolons as punctuation
in Ada programs. The semicolon is used in Ada to terminate statements. Regrettably,
this rule is easier to state than to use in practice, because no comparable rule is
available to define what a “statement” is in loose terms. The program header is not
regarded as a separate statement, for instance, while the entries in the variable
declarations are. The best route to familiarity with Ada’s semicolon rules is simply
to follow the usage shown in the sample programs.

1.2 INTEGER EXPRESSIONS

Ada provides ten arithmetic operators for use with integers. Three of the operators
are unary operators; that is, they accept a single value and return a single value.
The others are binary operators, meaning that they accept a pair of values. The
unary operators are

+ for identity
— for negation
abs for absolute value

The binary operators are

+ for addition

- for subtraction

i for multiplication
/ for division

mod for modulus

Sec. 1.2 Integer Expressions 5

rem for remainder
¥ for exponentiation

The unary operators, along with the first three binary operators, are equivalent
to their counterparts in conventional arithmetic. Here are some expressions written
with these operators:

X*X - -square of X
—SIGN - -negative of SIGN
+1I --same as I

4+ 6 --10

abs (4 — 6) --8

When used with integers, the division operator differs from conventional
division. This difference arises because an arithmetic operator in Ada always returns
a value that has the same type as its operands. For operations like addition and
multiplication, this is consistent with conventional arithmetic: the sum of two in-
tegers is always an integer, for instance, as is the product of two integers. With
division, however, the rule creates a discrepancy, because integer division in Ada
returns only the integer part of the quotient. Thus, the integer expression 5/2 yields
2, not 2.5.

The operators mod and rem are provided so that programmers can circumvent
this discrepancy. These operators return the remainder from a division operation.
Given a pair of positive integers i and j, we can find the remainder of i/j with either
of the following expressions:

irem j
imod j

For positive integers, the following identity holds:
imodj=iremj=1- ()%

If the two integers have different signs, then the two operators have slightly
different effects. When one operand is positive and the other is negative, the identity
above does not hold for mod. The following identity holds instead:

imodj=1—- (i4)% +J

Here are some expressions in which these operators appear:

713 --equals 2
7 rem 3 --equals 1
7 mod 3 --equals 1
-7/-3 --equals 2
—7rem -3 --equalsl
—7mod -3 --equalsl
—-7/3 --equals —2

—7rem 3 --equals —1

6 Fundamentals Chap. 1

-7 mod 3 --equals 2
-3 --equals —2
7rem —3 --equals 1
7 mod —3 --equals —2

When used with integers, the exponentiation operator requires that the right
operand (i.e., the exponent) be a nonnegative value. If the exponent is zero, then
the operation returns the value 1, as with ordinary exponent operations. Here are
some examples of expressions in which the exponentiation operator is used:

X**2 --square of X

J**0 --equals 1 for any J
R ** BITS

M**N

A¥(X**2) + B*X + C

Expressions in Ada are evaluated according to rules of operator precedence
similar to the standard precedence rules of algebra. Each operator has a level of
precedence that determines the order in which the components of an expression
will be processed. Four levels of precedence are defined for the integer operators:

*%

* / mod rem
+ — abs - -unary
+ = - -binary

When an integer expression is encountered, the exponentiation operations are
performed first; binary additions and subtractions are performed last. When an
expression contains several operators on the same level of precedence, they are
evaluated from left to right. Thus,

10+ 6*2 - -equals 22, not 32
_**3+1 --equals 9, not 16
10*3/2 --equals 15, not 10

Parentheses can be inserted in an expression to override the precedence rules. Thus,

(10 +6)*2 - -equals 32
R*(3+ 1) --equals 16
10* (3/2) --equals 10

When writing large integers, we can use two options provided by Ada to
make them more readable. First, we can insert underscores in them to separate
groups of digits. These embedded underscores have no effect on the value of the
number. Hence, the following integers all have the same value:

1234567
123_ 4567
1_234_ 567

Sec. 1.3 Object Declarations 7

Second, we can use scientific notation. A number written in scientific notation
has two parts: a mantissa and an exponent. In the form of scientific notation provided
by Ada, the mantissa and the exponent are separated by an E or an e. A number
written in scientific notation is equal to the mantissa multiplied by ten to the power
of the exponent. For example:

5e0 --equals 5
5E1 - -equals 50
BER - -equals 500
Oel --equals O

imposes this restriction because raising a number to a negative power generally
yields a noninteger result. Of course, no such restriction applies to the mantissa.

1.3 OBJECT DECLARATIONS

In Ada, the term object refers to a place where values can be stored. A variable is
one kind of object; other kinds of objects include constants and numbers. This
section will examine declarations for all three. We have seen some examples of
variable declarations already. In general, a variable declaration takes the form of
a list of identifiers followed by the name of the desired type. Variable declarations
may also specify the value that the variables will initially have. Here are some
examples of variable declarations:

SUM : INTEGER;
P,Q:INTEGER;
SALES1,SALESR,SALES3: INTEGER:= 0;

The first declaration creates an integer variable named SUM. The second
creates integer variables named P and Q. The third creates integer variables named
SALES1, SALES?2, and SALES3 and assigns them an initial value of 0. The practice
of initializing a variable within its declaration offers several advantages. First, it
eliminates the need to write an additional assignment in the body of the program.
Second, it makes the initial value of the variable easier for a human reader to find.
Third, and most usefully, it prevents “undefined value” errors—i.e., it eliminates
the possibility that the program will attempt to access the variable before it has
been given a value.

The initial value specified in a variable declaration can be an expression. If
the expression includes other variables, then those variables must be declared and
initialized first. Here is a sequence of declarations in which this requirement is met:

MASS : INTEGER:= 10;
ACCEL: INTEGER:= 5;
FORCE : INTEGER : = MASS * ACCEL;

8 Fundamentals Chap. 1

In this case, FORCE will be initialized to 50. Transposing the declarations
for FORCE and ACCEL, however, would make the sequence invalid. Here is
another sequence of declarations that meets the requirement:

POS1:INTEGER:= —3;
POSR: INTEGER :=7;
LENGTH : INTEGER : = abs (POS1 —POSR);

A constant declaration associates an identifier with a value that remains un-
changed during program execution. Constant declarations have the same form as
variable declarations, except that the type identifier is preceded by the reserved
word constant. Here are some examples of constant declarations:

Freezing_ Point: constant INTEGER : = 0;
SPEED__LIMIT : constant INTEGER : = 55;
CAPACITY : constant INTEGER : = 265 ;
LOAD: constant INTEGER : = CAPACITY/3 ;

As with variable declarations, the value specified in a constant declaration
may be an expression. Variables and constants can appear interchangeably in con-
stant and variable declarations, as long as the declarations are made in a valid order.
Unlike a variable, however, a constant cannot be assigned a new value in the body
of the program.

A number declaration is similar to a constant declaration, with two differences.
First, a number declaration does not include a type identifier; the type of the value
is determined by inspection. Second, the value specified in a number declaration
must be given as a static expression. A static expression is one that can be evaluated
before the program runs. The only values that can appear in a static numeric
expression are literals, constants declared with static expressions, and declared
number identifiers. A literal is an explicit value, like “— 10" or “3e4.” The only
operations that can be performed in a static expression are the predefined operations,
such as addition and multiplication. Here are some examples of valid number
declarations:

DOUBLE__BYTE: constant:= 2 ** 16 ;
Line_Size:constant:= 80;

Lines: constant:= 24;

Page__Size: constant:= Line_ Size*Lines;

Constant and number declarations are useful when a certain value is likely
to be used many times throughout a program. First, associating such a value with
a symbolic identifier makes the program easier to understand. When we read a
program for the first time, we will doubtless find it more comprehensible if the
programmer used identifiers instead of unexplained literals. Second, constant and
number declarations make a program easier to transport and modify. If we want to
alter a machine-dependent value, say, we can do so more quickly and reliably if
the value has been associated with an identifier. It is obviously far simpler to modify

Sec. 1.4 Input and Output 9

one line—a constant declaration—than to update every occurrence of the value in
the program body.

In Ada parlance, the action of associating an identifier with an entity in the
program is called elaboration. Just as statements are executed and expressions are
evaluated, declarations in an Ada program are said to be elaborated. Taken together,
the declarations in an Ada program are termed the declarative part of the program.

1.4 INPUT AND OUTPUT

The example programs that appeared earlier in this chapter included a number of
cryptic statements. One of them preceded the program headers:

with TEXT__IO; use TEXT__IO;
The others were placed in the declarative part:

package INT IO is new INTEGER__IO(INTEGER) ;
use INT__I0;

These statements are needed so we can perform input and output in the program
body. The first one informs Ada that we will be using input—output subprograms
like GET and PUT. The second and third are used to “awaken” the subprograms.
To be precise, we should call this awakening process instantiation. We will not
concern ourselves with the details of instantiation until much later. For now, all
we need to know is how to make it work.

A separate instantiation is needed for each data type that will be involved in
input or output. In the examples, we used only the type INTEGER. Suppose we
are also using GET or PUT with an integer type called WXYZ. We would then
write this in the declarative part:

package INT IO is new INTEGER__IO(INTEGER);
package WXYZ_ IO is new INTEGER__ IO(WXYZ);
use INT__IO, WXYZ__10;

The pattern should now be evident. First, we chose an identifier for each
instantiation. (Any identifier is suitable.) For the instantiation of INTEGER in-
put—output we used INT__IO. For WXYZ we used WXYZ__10. We then placed

each one in a different package . . . is statement as shown. Finally, we listed them
in a use clause. Ada’s input—output subprograms are now available for the given
types.

As used here, GET and PUT control whatever device has been designated
the default file. We will assume that the default file is a keyboard terminal with a
screen or a printer of some kind. The following statement, then, will accept a value
from the terminal:

GET(USER__ID);

