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PREFACE

During the past several years the theory of angular momenium has
come to occupy a more and more important position in the development
of physical theories of nuclear and atomic structure. One reason for this
is found in those improvements in experimental techniques whereby it
has become possible to measure angular distributions in nuclear reac-
tions, or alternatively angular correlations of successively emitted radia-
tions. From an entirely different quarter we find that the theory, in its
modern form, can be very advantageously applied to the formulation
and solution of problems associated with the static magnetic and elec-
tric nuclear moments which are coupled to the electric and magnetic
fields arising from surrounding charges. Here reference is made to prob-
lems encountered in low-temperature studies as well as to those met in
microwave spectroscopy.

It is therefore hardly surprising that there has been an upsurge of
interest in the elements of the theory which are basic for the description
of such physical phenomena. The theory of angular momentum is essen-
tially a highly formal one. Its principal ingredients are certain parts of
group theory and tensor algebra. In these pages, however, the emphasis
is much less abstract than these formidable terms iraply. The present
work is the result of a course of lectures given at the Qak Ridge Nuational
Laboratory in the winter and spring of 1955. In preseniing those lec-
tures and in writing these pages it has been my conviction that a clear
understanding of the elements of the theory could be heipful to many
physicists, and that the ideas as well as the techniques involved can be
made available to a majority of those with a graduate-course knowledge
of quantum mechanies. There is no implication that one can avoid the
use of formalism. The simplification which the present treatment, it is
hoped, does achieve is based on two delimiting factors. First, we are
concerned here only with the properties of rotatinns because of their in-
timate connection with the concept of angular momentum. Second, the
reasoning is inductive, and, as the theory initially develops, it makes a
“smooth-join”’ with those aspects of quantum mechanics that are, com-
paratively speaking, common knowledge. In this way, it is felt that it is
possible to make the ideas as well as the analysis transparent and simple.
At the same time, this entails little if any essential loss in powcer and /or
elegance in the methods. What is sacrificed is the opportunity to discuss
and treat the most general and complicated problems in the most expedi-
tious manner. Actually, this loss of generality is felt in very few places,
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and these are pointed out in the text. What is gained, it is hoped, is the
opportunity to make the ideas underlying the theory and the means of
using it available to a much wider audience.

Of course, a number of applications are given as illustrations. No
attempt is made to treat all possible applications,; nor is any one treated
in anything resembling an exhaustive manner. In several cases this
would hardly be necessary. For instance, we find that the use of the
theory great!y facilitates the calculation of the matrix elements of the
quadrupole coupling energy. Once this is done, the determination of the
energy levels of the system under consideration is a matter of solving a
secular determinant, and further discussion would, therefore, be irrele-
vant from the point of view of our expressed purpose. Part A is devoted
to an exposition of the major elements of the theory. Most, though not
all, of the applications are to be found in Part B.

The first chapter is a review of basic principles. Here we present such
discussion of operators and their matrix representations as is pertinert
for the sequel. In this connection a word of explanation or apology may
be in order. To make the discussion more apposite a few references to
physical situations are made, and the expression “angular momentum”
or “spin’ is used. While at this point nc formal definitions have been
given, it is felt that the reader has some “intuitive’” idea of what is meant
and would profit by the examples chosen for illustration and the discus-
sion of them. For the purist, these cxamples would be meaningful on
rereading after covering material appearing in Chapter II. Actually,
the examples chosen are quite familiar ones, appearing in fairly elemen-
tary discussions. The remaining four chapters comprising Part A carry
the development through the introduction of the coupling coefficients
for vector addition (C-coeflicients), the transformation properties of the
angular momentum wave functions under rotations of the coordinate
axes, irreducible tensors, and Racah coefficients. The applications pre-
sented in six chapters of Part B3 deal with static moments of systems
composed of charged particles and elementary magnetic dipoles, parti-
cles of intrinsic spin } and 1, oriented nuclei (this topic includes angular
correlation in cascade disintegrations as well as angular distributions and
changes in total cross seetions in low-temperature experiments), coupling
schemes in nuelear reactions, and wave functions for systems of identical
particles,

1t is a pleasure to record my gratitude to Drs. L. D. Roberts and
J. W. T. Dabbs, for many conversations in whick they ably representéd
the reader’s point of view. Dr. A. E. Glassgold rendered helpful service
m preparing a first draft of the notes for Part A.

M. E. Rose
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I. REVIEW OF BASIC PRINCIPLES

The background needed for the ensuing chapters is presumably well
known to all those who have an acquaintance with quantum mechanies.
For ease of reference and for completeness, this chapter provides a brief
résumé of the necessary formal constructs.

1. HERMITIAN OPERATORS

To discuss the properties of Hermitian operators we assume that the
scalar product of two functions, x and ¢ for example, is defined and has
these properties:

(x ) = ¢ 0* (1.1a)
(x; ¢8) = ¢(x, ) (1.1b)
(6 &1+ $2) = (6 &) + (x $2) (1.1¢)
(x1 + xe2, &) = (x1, ) + (x2, §) (1.1a)

The asterisk indicates complex conjugate; ¢ is a complex number. "The
detailed form of the scalar product is discussed below.
The Hermitian adjoint @ of the operator Q has the property

@tx, O = (x, %) (1.2)

For example, for the gradient operator V™ = — V if the functions x and
¢ vanish on the boundary of the domain of integration. A Hermitian or
self-adjoint operator is its own adjoint. This means that 2 = @, and
therefore

@x, ) = (6, %) (1.3;

In the example given above 7V is Hermitian.

If we consider the matrix representation of the operator €, its Her-
mitian adjoint is the matrix obtained by transposing (interchanging rows
and columns) and taking the complex conjugate of each element. Equa-
* tion (1.2) may be regarded as the formal expression of this definition
since, in conjunction with (1.1a), it shows that (2%x, ) = (@, x)* or
(x, %) = (&, 29 x)*. Equation (1.3) is then the formal definition of s

3



4 ELEMENTARY THEORY OF ANGULAR MOMENTUM

Hermitian matrix. Whether we think of an operator or its matrix repre-
sentation it follows easily that

(0 -+ )T = 0F .- ofaelet

Two important properties of Hermitian operators are the following:
(&) They have real «xpectation values [from (1.3) and (1.1a)].

(x, &) = (x, @)* (1.4)

(4) The eigenvalue problem yields real eigenvaiues and orthogonal
functions. That 18, the equation

W= oy

with its boundary conditions is satisfied only for certain values of w, in
this case, from (1.4) with x = ¢, real eigenvalues.! The corresponding
eigenfunctions are labeled with the eigenvalues w

Wy = oo (1.5)

Consider two linearly independent eigenfunctions ¢, and ¢,. By
linearly independent we mean there exist no non-vanishing constants ¢
and ¢ such that e, + ¢'¥o = 0. Otherwise ¥, and ¢, would differ
only by a multiplicative constant and would be equivalent.? From the
definition (1.3) of a Hermitian operator it follows that

(\l’w’: Q‘l’w) s (Q‘.l’w’y %)
or

(@0 = @)WY, ¥u) =0

If w # o', Y, and ¢, are orthogonal; that is, Wur, ¥u) = 0. If w = o,
Y. and ¢, may still be orthogonalized since they are linearly independ-
ent. Thus, the linear combination ¥, — (Y, ¥u)¥w: i8 orthogonal to ¥
although these two functions have the same eigenvalue—are still degen-
erate. Actually these eigenfunctions have to be simultaneous eigenfunc-
tions of a whole set of commuting Hermitian operators,® and the label w
stands for a set of quantum numbers. Then, in the comparison of inde-
pendent eigenfunctions of the system, no pair will have identical sets of
quantum numbers or eigenvalues. The degeneracy means simply that
the cigenvalues of at least one of the operators will coincide. In the
usual terminology degeneracy implies equal energy.

1 We shall restrict ourselves to cases where the eigenvalue spectrum is complete.

2 If we require that they have the same normalization they would, in faet, differ
by only a phase factor { 2 number of modulus one).

3 More will be said about the simultaneous diagonalization of a set of commuting
Hermitian operators in section 3.



REVIEW OF RASIC PRINCIPLES 3

In view of the foregoing we can conclude that the scalar product of
two independent eigenfunctions is

Wnry¥n) =0 for n' =n

Here it is again emphasized that n and n’ are collective labels for all the
eigenvalues; n’ # n means that at least one of the eigenvalues is different
for the two eigenfunctions. The eigenfunctions can be normalized to
unity by multiplication by an appropriate number,

w’n': ¢n) =1 for n' =n
Thus, the ¥, are said to constitute an orthonormal set

(‘l’n’, \bn) = On'n (16)
Furthermore, they are also a complete set, although we shall not prove
this here. By completeness we mean there exists no function F such
that (¥, F) = 0 for all n. As a consequence, a reasonably behaved *
function f can be expanded in terms of the basis y,,:

=2 fa¥m Jo = Wn, 1) (L.7)

The geometrical interpretation of the foregoing is obtained by regard-
ing the set of Y, as a set of orthonormal unit vectors in & space of as many
dimensions as the set of numbers n represents. This number need not
be finite, of course. The expansion given above is the analogue of the
representation of “vector” fin terms of its components f, and the unit
vectors ¥,. Even when the space of n is not finite we are sometimes
interested in a subspace which is. Thus. n may represent three numbers
ny, ng, ng. Of these, n; (the energy, say) has a spectrum with an infinite
number (countable or otherwise) of permitted values, n, and/or nz may
represent eigenvalues of Hermitian operators for which the spectrum in-
volves a finite number of permitted values. An example is one of the
coraponents of the angular momentum. If n3 has this property, then
the sum (1.7) has a finite number of terms, with n; and n, fixed. This
corresponds to choosing only those “vectors” f that lie in a subspace of
the total space.

If the functions under discussion depend only on the space coordinate
z, the scalar product in (1.1) is an integral

(6 8) = [ x4 1@

over all values of . Here d®z is the volume element. In addition, we
will be interested in eigenfunctions which also depend on variables with

4 For those insisting ou mathematical rigor a satisfactory definition of “reasonably
behaved” is difficult. Oune can say that the coefficients f, must exist and that the
series (1.7) be suminable in some sense, although this is tautological. Nevertheless,
it may suffice to say that no difficulties are anticipated in our :pplications.
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discrete ranges. For example, there may be a spinor index s. As an
2xample (which will become clearer later on) the index s assumes 2j+1
values for a particle of angular momentum ° j. The wave function can
shen be written as a column matrix each element of which is a function
>f the space coordinates,
M) ¢y
[x CON

x@(@) |
x(x) = : l

294
X(-H “(_.r),

and the scalar product involves a sum as well as an integration
p g
3 (%N )y o
&) = Zfd% () (2 —fd*’x Xt
m

n the last equality matrix multiplication of x* into { is implied, and
nere the cross means complex conjugate transpose. Unless otherwise
‘adicated, a scalar product involves summation over all independen®
variables, which will be an integration over variables with a continuous
sange and the usual sum for discrete variables.

As already indicated, the sum in the scalar product written above can
He considered as the matrix multiplication of the row matrix for x, ob-
sained by transposing and complex conjugating (i.e., x™), times the col-
mn matrix for {. We can also introduce in this connection the ortho-
wormal set ¢,, whose elements are all zero except that one in the mth

lace which is unity. If there are 2541 rows, so that j is a half-integer
r an integer, then the ¢,, look like this:

(17 K2 M
0 0
¢ = ¢ = {0 Poj41 =
0
0
L J L1 ]

® Angular momentum will be expressed in units of . Thus j and similar symbols
= e angular momenta divided by #. Stated otherwise, we depart from the ordinary
gs units and adopt a new system of mechanical units in which # has the numerical
valite unity.
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Consequently, we can write
X =2 X™¢n
m

This checks with the foregoing when we realize that the ¢, form an
orthonormal set. That is,

(¢m; ¢n) = bnm
1

The case j = 3 is well known from the Pauli treatment of electron
spin; here m assumes just two values, which we can take to be 4% for
reasons to appear in section 8. Another possibility is infrinsic spin 1,
of which the Maxwell field affords an excellent example. A sufficient
and complete description for monochromatic fields is given in terms of
the vector potential ® A or its components which may be represented as
follows:

1 :
A1 = = —\7_5 (Az —f ’LAy)

A0=Az

1
A_4 3 (4z — ©4,)

The reasons for the phases and normalization will be discussed later.
The “three-ness” (2-14-1) of this field arises from its vector character,
which makes the intrinsic spin 1; see Chapters V and VII. Of course,
as we shall see, the electromaguetic field can have any integer angular
momentum >1, just as an electron can have any half-integer angular
momentum > 1.

2. UNITARY TRANSFORMATIONS

Of particular importance in the theory of angular momentum are uni-
tary transformations. A unitary transformation is a linear homogeneous
transformation which preserves lengths and angles; that is, scalar prod-
ucts are left invariant. The geometrical interpretation is a rotation in
the space spanned by the base vectors ¥, discussed in the last section.
That is, we now choose a different basis, ¢, say, and, by completeness
of the set y,, the functions ¢, must be expressible as linear combinations

6 We assume that the vector potential is defined with the aid of the Lorentz con-
dition V-A 4 (1/c)(d¢/0t) = 0, where ¢ = scalar potential. Then the scalar poten-
tial is defined by A to within an additive time-independent quantity. The latter is
a static field and is of no interest for the dynamical preblems with which we are usu-
ally concerned.
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of the ¢, as in (1.7). This connection between the two bases (¥, and
¢,) constitutes the unitary transformation.

If C is an operator (inatrix) which generates the unitary transforma-
tion and ¢; and ¢; are any two functions or column matrices (so that
Cy; and Cyp, are the transformed functions), then, by definition,

(Co1y Ca) = (o1, ¢2) (1.8)
Using the properties (1.2) of the Hermitian adjoint, this is
(¢1, CTCo2) = (o1, ¢2)
Since ¢; and ¢, are any two fuactions, we conclude that
CtC =1 (1.8)
By a theorem of determinants we can write |
det C*det C =det1 =1

where det, C is the determinant of the watrix C. Since det C* = (det C)*
it follows that
|det C2 =1

But, since det (7 # (0 (that is, it is non-singular), it follows that the
matrix of € has an inverse C~! such that CC~! = C~'C = 1. Not only
can we write the linear equations expressing the new basis in terms of
the old, but we can also solve these linear equations and express the old
basis in terms of the new HEquation (1.8) is just the relation that defines
the inverse 7 of (. That is,

Cl=ct (1.9)

As can be seen from (1.8) or (1.9), the product of any number of uni-
tary matrices (or transformations taken successively) is a unitary matrix
(or unitary transformation). Also, if € = C;Cy and CCT = 1 and
C]C1+ = 1, it follows that 1 == CC+ = ClCijC’f" or CIC;gC; = Cl.
Since C; ! exists, we find CoCy = 1. This is the statement given above
with the added result that the inverse of a unitary matrix is glso unitary.

The result (1.8) may be written iu terms of the matrix elements Chp,y.
These are defined by ‘ »

Y = Z Cnm‘Fm (1-10)
m

where the ¢, and ¢,, are the basis vectors in new and old representations,
respectively, and, because of the orthoncrmality of the @,,

{j'nm- = (\‘i"ﬂ‘u \l’n) (1'

* By the definition, if ¢ = C1Cs «-- Cy, then €71 = €0 ... 05707,

1)
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Rewriting the operator equations of (1.9), CC* = 1 and C*C =1, in
matrix notation leads to the unitary properties of the matrix elements
Cmm
2 Cular = Bum (1,12)
1

E C;Clm = bum (1.13)
!

where we have used the fact that C;,, = Ch,.. Thus the orthogonslity
property is obtained whether we sum on the row or the column index.
One way of looking at this result is to consider the elements in any row,
say the nth, as a ‘“vector’” C,_; the lth element of C,_ is C,;. Then
(1.12) states that these row vectors are orthonormal: C,_-C,,_ = &,n.
Similarly we may consider the elements of any column as constituting
a vector C_,, and find from (1.13) that these column vectors are ortho-
normal, C_,-C_,, = &nm.

Once the transformation from one hasis to another has been defined,
the next question is to determine how the matrix representation of an
operator changes when we change the basis. Thus, for an operator Q,
if we know the elements (¢, Qp), what are the elements ® (y/, Q¢)? The
matrix element of the operator 2 between two states described by wave
functions ¢’ and ¢ is

(¢, Q) = (¢'|Q]¢) (1.14)
The transformed functions?® are ¢ = Cop and ¢’ = C¢’, and
(¢, ) = (CTY,207"Y) = (¥, (CTHTQCTY) = , Q)

where
Qr = (CTHtac? ' (1.15)

is the transform of the operator ©. For a unitary transformation
(C™H)* =Cand
Qr = CeC™! = ceCct , (1.16)

That is, the matrix representation of an operator in the ¢ basis is Qp
when its representation in the ¢ basis is © and these are connected by
(1.16). The choice of basis is arbitrary, and the one most convenient,

8 Sometimes we shall use the symbol (¢’ |Q|y) for the matrix element (', @), This
is especially convenient if the quantum numbers or eigenvalues are used for labeling.
Thus, @mn = Ym, Wn) = Yn|Q{¥n) = (m{d|n).

? ¢ and o are a column matrices with clements ¢, and op, respectively; see equation

(1.10).
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for calculation is often used.'® Physical results are, of course, independ-
ent of this choice, and the preceding discussion expresses this explicitly
insofar as the results of measurements are formulated in terms of matrix
elements. For example, C may be the unitary transformation for a rota-
tion of the coordinate system chosen to make the calculation of a physical
quantity as sirple as possible.

3. DIAGONALIZATION OF OPERATORS
The operator Q is diagonal in the representation of its eigenfunctions

Wy = wndn (1.17)
(Y, W) = Wndpm
Let Q,,» be its matrix elements in scnie other basis ¢, so that
Qmn = (em, Sen)
2 Crnom (1.18)

i

Qen

Starting in the representation of the ¢,, it is an important problem to
determine the unitary transformation (' from the set ¢, to the set ¢,
which diagonalizes ©. For simplicity let us assume that @ is Hermitian
with discrete, non-degenerate eigenvalues. This will be the case in many
applications of physical interest. From (1.10) we have

Yy = Z Cmn‘p’m

Operate on both sides with ©; on the left, use (1.17),

ﬂ‘!’n = wnkl/n = Wp Z Cnm‘Pm

m

and, on the right, use (1.18),
Q Z Cnmsam = E C'nm Z Qimepr
!

m m
Equating these two gives

E Z leC‘nm‘Pl = wn Z Cnltpl
i l

15 m

10 This is completely analogous to the arbitrariness involved in the choice of a
coordinate system in the description of any physical process. This does not imply
that the description of all physical situations can be given without specifying a
coordinate system (e.g., angular distributions) but that the choice is only a matter
of convenience. In any event, no matter how we choose the coordinate syst :m, the
answer to the problem of angular distributions, e.g., relative to a physically defined
direction (propagation vector of an incident beam), is always the same.



