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PREFACE

Statistical communication theory is generally regarded as having been
founded by Shannon (1948) and Wiener (1949), who conceived of the
communication situation as one in which a signal chosen from a specified
class is to be transmitted through a channel, but the output of the channel
is not determined by the input. Instead, the channel is described statisti-
cally by giving a probability distribution over the set of all possible
outputs for each permissible input. At the output of the channel, a
received signal is observed, and then a decision is made, the objective
of the decision being to identify as closely as possible some property
of the input signal.

The Shannon formulation differs from the Wiener approach in the
nature of the transmitted signal and in the type of decision made at the
receiver. In the Shannon model, a randomly generated message produced
by a source of information is “‘encoded,” that is, each possible message
that the source can produce is associated with a signal belonging to a
specified set. It is the encoded message which is actually transmitted.
When the output is received, a “decoding” operation is performed, that
is, a decision is made as to the identity of the particular signal transmitted.
The objectives are to increase the size of the vocabulary, that is, to make the
class of inputs as large as possible, and at the same time to make the
probability of correctly identifying the input signal as large as possible.
How well one can do these things depends essentially on the properties
of the channel, and a fundamental concern is the analysis of different
channel models. Another basic problem is the selection of a particular
input vocabulary that can be used with a low probability of error.

In the Wiener model, on the other hand, a random signal is to be
communicated directly through the channel; the encoding step is absent.
Furthermore, the channel model is essentially fixed. The channel is
generally taken to be a device that adds to the input signal a randomly
generated “noise.” The “decoder” in this case operates on the received
signal to produce an estimate of some property of the input. For example,
in the prediction problem the decoder estimates the value of the input at
some future time. In general, the basic objective is to design a decoder,
subject to a constraint of physical realizability, which makes the best
estimate, where the closeness of the estimate is measured by an appropriate
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vi PREFACE

criterion. The problem of realizing and implementing an optimum de-
coder is central to the Wiener theory.

I do not want to give the impression that every problem in communica-
tion theory may be unalterably classified as belonging to the domain of
either Shannon or Wiener, but not both. For example, the radar reception
problem contains some features of both approaches. Here one tries to
determine whether a signal was actually transmitted, and if so to identify
which signal of a specified class was sent, and possibly to estimate some
of the signal parameters. However, I think it is fair to say that this book
is concerned entirely with the Shannon formulation, that is, the body of
mathematical knowledge which has its origins in Shannon’s fundamental
paper of 1948. This is what “information theory” will mean for us here.

The book treats three major areas: first (Chapters 3, 7, and 8), an
analysis of channel models and the proof of coding theorems (theorems
whose physical interpretation is that it is possible to transmit information
reliably through a noisy channel at any rate below channel capacity,
but not at a rate above capacity); second, the study of specific coding
systems (Chapters 2, 4, and 5); finally, the study of the statistical properties
of information sources (Chapter 6). All three areas were introduced in
Shannon’s original paper, and in each case Shannon established an area
of research where none had existed before.

The book has developed from lectures and seminars given during the
last five years at Columbia University; the University of California,
Berkeley; and the University of Illinois, Urbana. I have attempted to
write in a style suitable for first-year graduate students in mathematics
and the physical sciences, and I have tried to keep the prerequisites modest.
A course in basic probability theory is essential, but measure theory is
not required for the first seven chapters. All random variables appearing
in these chapters are discrete and take on only a finite number of possible
values. For most of Chapter 8, the random variables, although continu-
ous, have probability density functions, and therefore a knowledge of
basic probability should suffice. Some measure and Hilbert space theory
is helpful for the last two sections of Chapter 8, which treat time-continuous
channels. An appendix summarizes the Hilbert space background and
the results from the theory of stochastic processes that are necessary for
these sections. The appendix is not self-contained, but I hope it will
serve to pinpoint some of the specific equipment needed for the analysis
of time-continuous channels.

Chapters 1 and 3 are basic, and the concepts developed there appear
throughout the book. Any of Chapters 4 through 8 may be read im-
mediately after Chapters 1 and 3, although the reader should browse
through the first five sections of Chapter 4 before looking at Chapter 5.
Chapter 2 depends only on Chapter 1.
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In Chapter 4, the exposition is restricted to binary codes, and the
generalization to codes over an arbitrary finite field is sketched at the
end of the chapter. The analysis of cyclic codes in Chapter 5 is carried
out by a matrix development rather than by the standard approach,
which uses abstract algebra. The matrix method seems to be natural
and intuitive, and will probably be more palatable to students, since a
student is more likely to be familiar with matrix manipulations than he
is with extension fields.

I hope that the inclusion of some sixty problems, with fairly detailed
solutions, will make the book more profitable for independent study.

The historical notes at the end of each chapter are not meant to be
exhaustive, but I have tried to indicate the origins of some of the results.

I have had the benefit of many discussions with Professor Aram
Thomasian on information theory and related areas in mathematics.
Dr. Aaron Wyner read the entire manuscript and supplied helpful com-
ments and criticism. I also received encouragement and advice from Dr.
David Slepian and Professors R. T. Chien, M. E. Van Valkenburg, and
L. A. Zadeh.

Finally, my thanks are due to Professor Warren Hirsch, whose lectures
in 1959 introduced me to the subject, to Professor Lipman Bers for his
invitation to publish in this series, and to the staff of Interscience
Publishers, a division of John Wiley and Sons, Inc., for their courtesy
and cooperation.

Urbana, Illinois Robert B. Ash
July, 1965
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CHAPTER ONE

A Measure of Information

1.1. Introduction

Information theory is concerned with the analysis of an entity called a
‘“‘communication system,” which has traditionally been represented by the
block diagram shown in Fig. 1.1.1. The source of messages is the person
or machine that produces the information to be communicated. The
encoder associates with each message an “object”” which is suitable for
transmission over the channel. The “object” could be a sequence of
binary digits, as in digital computer applications, or a continuous wave-
form, as in radio communication. The channel is the medium over which
the coded message is transmitted. The decoder operates on the output of
the channel and attempts to extract the original message for delivery
to the destination. In general, this cannot be done with complete reliability
because of the effect of “‘noise,”” which is a general term for anything which
tends to produce errors in transmission.

Information theory is an attempt to construct a mathematical model for
each of the blocks of Fig. 1.1.1. We shall not arrive at design formulas
for a communication system; nevertheless, we shall go into considerable
detail concerning the theory of the encoding and decoding operations.

It is possible to make a case for the statement that information theory
is essentially the study of one theorem, the so-called “fundamental
theorem of information theory,” which states that “it is possible to
transmit information through a noisy channel at any rate less than channel
capacity with an arbitrarily small probability of error.” The meaning of
the various terms “information,” ‘‘channel,” “noisy,” ‘“rate,” and
“‘capacity” will be clarified in later chapters. At this point, we shall only
try to give an intuitive idea of the content of the fundamental theorem.

Noise

|

> Encoder |—>{ Channel > Decoder =3 Destination

Source of
messages

Fig. 1.1.1. Communication system.
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2 INFORMATION THEORY

Imagine a “source of information” that produces a sequence of binary
digits (zeros or ones) at the rate of 1 digit per second. Suppose that the
digits 0 and 1 are equally likely to occur and that the digits are produced
independently, so that the distribution of a given digit is unaffected by all
previous digits. Suppose that the digits are to be communicated directly
over a ‘“channel.” The nature of the channel is unimportant at this
moment, except that we specify that the probability that a particular digit

Channel

3/4

. 174 -

Source:
1 binary digit _—
per second

1 1/4 1

3/4

Transmits up to 1 binary
digit per second; probability
of error =1/4

Fig. 1.1.2. Example.

is received in error is (say) 1/4, and that the channel acts on successive
inputs independently. We also assume that digits can be transmitted
through the channel at a rate not to exceed 1 digit per second. The
pertinent information is summarized in Fig. 1.1.2.

Now a probability of error of 1/4 may be far too high in a given
application, and we would naturally look for ways of improving reliability.
One way that might come to mind involves sending the source digit
through the channel more than once. For example, if the source produces
a zero at a given time, we might send a sequence of 3 zeros through the
channel; if the source produces a one, we would send 3 ones. At the
receiving end of the channel, we will have a sequence of 3 digits for each
one produced by the source. We will have the problem of decoding each
sequence, that is, making a decision, for each sequence received, as to the
identity of the source digit. A “reasonable” way to decide is by means of
a “majority selector,” that is, a rule which specifies that if more ones than
zeros are received, we are to decode the received sequence as a “1”; if
more zeros than ones appear, decode as a “0.” Thus, for example, if the
source produces a one, a sequence of 3 ones would be sent through
the channel. The first and third digits might be received incorrectly; the
received sequence would then be 010; the decoder would therefore
declare (incorrectly) that a zero was in fact transmitted.

We may calculate the probability that a given source digit is received
in error; it is the probability that at least 2 of a sequence of 3 digits will be
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received incorrectly, where the probability of a given digit’s being incorrect
is 1/4 and the digits are transmitted independently. Using the standard
formula for the distribution of successes and failures in a sequence of
Bernoulli trials, we obtain

3) ()2 (1)3_ 10 1
(2)(4) PRV ARV

Thus we have lowered the probability of error; however, we have paid a
price for this reduction. If we send 1 digit per second through the channel,
it now takes 3 seconds to communicate 1 digit produced by the source,
or three times as long as it did originally. Equivalently, if we want to
synchronize the source with the channel, we must slow down the rate of
the source to } digit per second while keeping the channel rate fixed at 1
digit per second. Then during the time (3 seconds) it takes for the source
to produce a single digit, we will be able to transmit the associated sequence
of 3 digits through the channel.

Now let us generalize this procedure. Suppose that the probability of
error for a given digit is # < 1/2, and that each source digit is represented
by a sequence of length 2z + 1; a majority selector is used at the receiver.
The effective transmission rate of the source is reduced to 1/(2n + 1)
binary digits per second while the probability of incorrect decoding is

. . M 2 4 1) e pveniik
p(e) = P{n + 1 or more digits in error} = 3 . g1 — pB) ;
k=n+1

Since the expected number of digits in error is (27 + 1) <n + 1, the
weak law of large numbers implies that p(e) =0 as n— 00. (If Sy, is
the number of digits in error, then the sequence S,,1/(2n + 1) converges
in probability to f, so that

S n+1
= P{S,, 1} = p{—21 }
p(e) {2+12"+} {2n+122n+1

=P{2i—2:_t1—12ﬂ+s}—>0 as n— 00.)

Thus we are able to reduce the probability of error to an arbitrarily small
figure, at the expense of decreasing the effective transmission rate toward
zero.

The essence of the fundamental theorem of information theory is that in
order to achieve arbitrarily high reliability, it is not necessary to reduce the
transmission rate to zero, but only to a number called the channel capacity.
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The means by which these results are obtained is called coding. The process
of coding involves the insertion of a device called an “encoder” between
the source and the channel; the encoder assigns to each of a specified
group of source messages a sequence of symbols called a code word suitable
for transmission through the channel. In the above example, we have just
seen a primitive form of coding; we have assigned to the source digit 0 a
sequence of zeros, and to the source digit 1 a sequence of ones. The
received sequence is fed to a decoder which attempts to determine the
identity of the original message. In general, to achieve reliability without
sacrificing speed of transmission, code words are not assigned to single
digits but instead to long blocks of digits. In other words, the encoder
waits for the source to produce a block of digits of a specified length, and
then assigns a code word to the entire block. The decoder examines the
received sequence and makes a decision as to the identity of the trans-
mitted block. In general, encoding and decoding procedures are consider-
ably more elaborate than in the example just considered.

The discussion is necessarily vague at this point;; hopefully, the concepts
introduced will eventually be clarified. Our first step in the clarification
will be the construction of a mathematical measure of the information
conveyed by a message. As a preliminary example, suppose that a
random variable X takes on the values 1, 2, 3, 4, 5 with equal probability.
We ask how much information is conveyed about the value of X by the
statement that 1 < X < 2. Originally, if we try to guess the value of X,
we have probability 1/5 of being correct. After we know that X is either
1 or 2, we have a higher probability of guessing the right answer. In other
words, there is less uncertainty about the second situation. Telling us that
1 < X < 2 has reduced the uncertainty about the actual value of X.
It thus appears that if we could pin down the notion of uncertainty, we
would be able to measure precisely the transfer of information. Our
approach will be to set up certain requirements which an uncertainty
function should “reasonably” satisfy; we shall then prove that there is
only one function which meets all the requirements. We must emphasize
that it is not important how we arrive at the measure of uncertainty. The
axioms of uncertainty we choose will probably seem reasonable to most
readers, but we definitely will not base the case for the measure of un-
certainty on intuitive grounds. The usefulness of the uncertainty measure
proposed by Shannon lies in its operational significance in the con-
struction of codes. Using an appropriate notion of uncertainty we shall
be able to define the information transmitted through a channel and
establish the existence of coding systems which make it possible to
transmit at any rate less than channel capacity with an arbitrarily small
probability of error.
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1.2. Axioms for the uncertainty measure

Suppose that a probabilistic experiment involves the observation of a
discrete random variable X. Let X take on a finite number of possible
values 2, @,, . . . , £, With probabilities py, p,, . . . , Py, TESPectively. We
assume that all p; are strictly greater than zero. Of course 2, p, = 1.
We now attempt to arrive at a number that will measure the uncertainty
associated with X. We shall try to construct two functions # and H.
The function 4 will be defined on the interval (0, 1]; A(p) will be inter-
preted as the uncertainty associated with an event with probability p.
Thus if the event {X = z;} has probability p,, we shall say that A(p,) is
the uncertainty associated with the event {X = z,}, or the uncertainty
removed (or information conveyed) by revealing that X has taken on the
value z; in a given performance of the experiment. For each M we shall
define a function H,, of the M variables p,,..., py (we restrict the
domain of H, by requiring all p, to be >0, and XY p,=1). The
function H(py, . . ., pyy) is to be interpreted as the average uncertainty
associated with the events {X = z,}; specifically, we require that
Huy(py, - -« py) = 22, ph(p,). [For simplicity we write H(py, - - - P )
as H(p,,...,py) or as H(X).] Thus H(p,,...,ps) is the average
uncertainty removed by revealing the value of X. The function 4 is
introduced merely as an aid to the intuition; it will appear only in this
section. In trying to justify for himself the requirements which we shall
impose on H(X), the reader may find it helpful to think of H(py, ..., pu)
as a weighted average of the numbers A(py), . . ., h(py)-

Now we proceed to impose requirements on the functions H. In the
sequel, H(X) will be referred to as the “uncertainty of X”’; the word
“average” will be understood but will, except in this section, generally
not be appended. First suppose that all values of X are equally probable.
We denote by f(M) the average uncertainty associated with M equally
likely outcomes, that is, f(M) = H(1/M, 1M, ..., 1/M). For example,
f(2) would be the uncertainty associated with the toss of an unbiased coin,
while f(8 x 10%) would be the uncertainty associated with picking a
person at random in New York City. We would expect the uncertainty of
the latter situation to be greater than that of the former. In fact, our
first requirement on the uncertainty function is that

f(M)= H(1/M, ..., 1/M) should be a monotonically increasing function
of M; thatis, M < M’ implies f(M) < f(M') (M, M' = 1,2,3,....).
Now consider an experiment involving two independent random variables

X and Y. Let X take on the values xy, @, . . . , Z,, With equal probability,
and let Y take on the values ¥y, ¥s, . . . , ¥z, also with equal probability.
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Thus the joint experiment involving X and Y has ML equally likely
outcomes, and therefore the average uncertainty of the joint experiment
is f(ML). If the value of X is revealed, the average uncertainty about Y
should not be affected because of the assumed independence of X and Y.
Hence we expect that the average uncertainty associated with X and Y
together, minus the average uncertainty removed by revealing the value of
X, should yield the average uncertainty associated with Y. Revealing the
value of X removes, on the average, an amount of uncertainty equal to
J(M), and thus the second requirement on the uncertainty measure is that

JML) =fM) +f(L) (M, L =1,2,..).

At this point we remove the restriction of equally likely outcomes and
turn to the general case. We divide the values of a random variable X
into two groups, 4 and B, where A consists of Zy, Zg, . . . , ¥, and B con-
sists of #,.1,%,,5,...,%,. We construct a compound experiment as
follows. First we select one of the two groups, choosing group 4 with
probability p; + p, + -+ + p, and group B with probability p,., +
Priz + * -+ py. Thus the probability of each group is the sum of the
probabilities of the values in the group. If group A4 is chosen, then we
select z; with probability p,/(p, + - - - + p) (i=1,...,r), which is the

i=r+1 Ty
Fig. 1.2.1. Compound experiment.
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conditional probability of z; given that the value of X lies in group 4.
Similarly, if group B is chosen, then z; is selected with probability
PilPrix+ - +py) =r+1,..., M). The compound experiment is
diagrammed in Fig. 1.2.1. It is equivalent to the original experiment
associated with X. For if Y is the result of the compound experiment, the
probability that ¥ = , is

P{Y = x,} = P{A is chosen and z, is selected}
= P{A is chosen}P{z, is selected | 4 is chosen}

- (ol

Similarly, P{Y = z,} = p,(i=1,2,..., M) so that ¥ and X have the
same distribution. Before the compound experiment is performed, the
average uncertainty associated with the outcome is H(py,...,py). If
we reveal which of the two groups 4 and B is selected, we remove on the
average an amount of uncertainty H(p; + *** + pp Prya + *** + P2
With probability p; + * -+ + p, group A4 is chosen and the remaining
uncertainty is

= Di.

H pl p2 L Py

.
Zpt Zp, 2 P

i=1 i=1

with probability p,.; + * -+ + py, group B is chosen, and the remaining
uncertainty is

H pr+1 pr+2 Pm
§ s Tar .
z 2 z P; Z pP;
i=r+1 i=r+l i=r+1

Thus on the average the uncertainty remaining after the group is specified is

(pl+.+p1')H _;_Iil—’--"_rp!—.

>p py 2

=1 =1

+ (pr+1 + pM)H Pr+1 g ey pM
Z D; 2 P
i=r+1 i=r+1

We expect that the average uncertainty about the compound experiment
minus the average uncertainty removed by specifying the group equals
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the average uncertainty remaining after the group is specified. Hence, the
third requirement we impose on the uncertainty function is that

H(plaspM)=H(p1+-+pr’pH_1+.+pM)

+(P1+"'+P,)H ,.p_l’-'wrp_r
Di Ep,-
=1 i=1

ki

+ (Pra+ -+ pyH ‘ﬁi,---,—fli .
2 p 2
i=rt1 i=rt1

As a numerical example of the above requirement, we may write

HG, 3 3, 8) = HQ, D + 1HG, D) + 1HG, D).
A B

Finally, we require for mathematical convenience that H(p, 1 — p) be a
continuous function of p. (Intuitively we should expect that a small
change in the probabilities of the values of X will correspond to a small
change in the uncertainty of X.)

To recapitulate, we assume the following four conditions as axioms:

1. H1/M,1/M, ..., 1/M) = f(M)is a monotonically increasing func-
tionof M (M =1,2,...).

2. f(ML) =f(M) + f(L) (M,L=1,2,..).

3. H(pl""’pM)=H(p1+”'+pr’pr+l+"'+pM)
+ oyt pH[ B P

2P p;

i=1 i=1

+(pr+1+'.'+pM)H 5)””—1 e » iy ;;M
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i=r41 i=r+l

r=1,2,...,.M—1).
(Axiom 3 is called the grouping axiom.)

4. H(p, 1 — p) is a continuous function of p.

The four axioms essentially determine the uncertainty measure. More
precisely, we prove the following theorem.

Theorem 1.2.1. The only function satisfying the four given axioms is

M
H(py, ..., py) = —C 3 p;log p,, (1.2.1)
i=1



