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PREFACE

Our goal is to survey the field of topological semigroups, and to
make this body of information accessible to the average graduate
student. As a step in this direction, we offer the present volume,
which lays the groundwork and covers several special avenues of re-
cent research. The spirit of our exposition follows that pf-A.. D3
Wallace, through whose influence both in his research and by way of
his students, the subject has developed since 1953. At that time
his invited address to the American Mathematical Society'stimulated
much activity along the lines of the question "What topological
spaces admit a continuous associative multiplication with unit?"

As noted by Wallace, the answers to these questions are likely to
involve more algebra and topology than Qas the case for compact
groups, where there is a representation theory due to the presence
of Haar measure. Our coverage here includes background material,
internal structure, products, quotients, and semigroups with some
special algebraic or topological property. We defer to a subse-
quent volume some of the aspects which rely on cohomology or cate-
gory theory.

This material can serve as a text for an introduction to
topological semigroups. It is not intended as a research tract,
but rather to‘éxpose various aspects of the subject.

In the igitial chapter we discuss the fundamental concepts of
topological-éémigroups, their substructures, and maps hetween semi-

iii
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groups. Most of tne notions here were introduced in the 1955 Wallace
notes, and these will be further explored in the remaining chapters.
Featured in the final section of this chapter is the ‘Lawson-Madison
theorem which generalizes an earlier result of Wallace on compact
semigroups to kw—semigroups. We present their proof for locally com-
pact o—compaét semigroups.

In the second chapter we demonstrate various techniques of
developing new examples of semigroups from existing ones, and dis-
‘cuss the properties of these new semigroups inherifed from the old
semigroups. Constructions include free topological semigroups, Bohr
compactifications, and products of various types. :

Monothetic 'semigroups, which were characterized by the work of
Koch, Numakura, and Hewitt, are discussed in the first section of
the third chapter. The Wallace-Rees-Suschkewitch structure theorem,
for compact completely simple semigroups appears in this chapter,
Most of the remaining portions of the chapter afe devoted to alge-
braic considerations of Green's relations and quasi-orders,

Contributions of Clifford, Faucett, Mostert and Shields, Cohen
and Krule, and Phillips are featured in the fourth chapter on inter-
val semigroups (threads). Their structure and the nature of
congruences onAinterval semigroups are characterized in this brief
chapter. y '

The fifth chapter features the Carruth-Lawson proof of the "
classical Mostert-Shields theorem on ‘the existence of one parameter
semigroups in certain compact monoids. An important example due to
Hunter appears at the end of the chapter.

In the final chapter we present results on compact divisible
semigroups. This chapter features the results of Keimel, the
contributions of Hudson and Hofmann, the structure theorems of
Brown and Friedberg, and the Hildebrant characteriiatioh of compact
subunithetic semigroups (the atoms of compact divisible semigroups).

More than a reference source for the text, the bibliography of
this book is one of the most complete guides to the literature in
topological semigroups to date, listing near}y 400 articles and books.

. Ji»H. €arruth
p J. A. Hildebrant
R. J. Koch
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Chapter 1

FUNDAMENTAL CONCEPTS

In this chapter we present some concepts which we consider to be
fundamental -to the study of topological semigroups. Mény of the re-
sults pertain to compact semigroups, as will be the situation for
the entire book. However, some of the theorpms are purely aigebraic
in nature or apply to a more general class of topological semigroups.
The algebraic results are included to make the chapter as self-con-
tained as we consider feasible. Some.kqowledge of elementary topol-
ogy will be assumed. The notation in this chapter will be used
throughout the book.

SEMIGROUPS

A semigroup is a non-empty set S together with an associative
multib]ication (x,y) > xy from S x S into S. The associative condi-
tion on S states that x(yz) = (xy)z for each x, y, z€ S. If A and
B are subsets of S,*we use the notation AB = {ab : a € A and b € B}.
If S has a Hausdorff topology such that (xly) v Xy is continuous,
with the product topology on S x S, then S is called a topological
semigroup. The condition that the multiplication on S is continuous
is equivalent to the condition that for each x, y € S and each open
set W in S with xy € W, there exist open sets U and V in S such that
x € Uy €V, and UV C K. :

If the word 'semigroup" appears with a topological adjective,
then '""topological semigroup'" is implied. For example, the statement
s is a compact semigroup' means that S is a compact topological

semigroup. Observe that any semigroup can be made into a topological
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semigroup by giving it the discrete topology, and thus a f1n1te
semigroup is a compact semigroup.

Relations are one of the fundamental notions in the study of
topological semigroups. We recall some of the basic concepts per-
taining to relations. A relation on a set X is a subset of X x X.
The diagonal of X is the relation A(X) = {(x, X) : X € X}. When no
confusion seems likely, we write simply A for the diagonal relation.
If A and B are relations on X, then the composition of A with B is
AeB={(x,y) : (x,z) €A and (z,y) € B for some z € X}. The con-

- verse of a relation R on X is R} = {(x,y) € X x X : (y,x) €ER}. A

relatlon R on X is reflexive if A C R, symmetric if R = R"l, transi-
tive if R e RC R, and an equivalence if R is reflexive, symmetric,
and transitive. A relation R on X is anti-symmetric if R N R~ Ntk A,
a quasi-order if R is reflexive and transitive, and a partial order
if R is an anti-symmetric quasi-order. If R is a relation on a set
X, then R(n) is defined by R(l) = R and R(n+l) = R(n) o R for each
positive integer n. The transitive closure of R is defined Tr(R) =
U {R(n)-: n a positive integer}. It is readily seen that Tr(R) is
the smallest transitive relation of X containing R.

' Although nets are not an essential part of the study of
tébological semigroups, they sometimes serve as a convenient tool in
establishing results about topological semigroups. We recall a few
basic notions about nets and directed sets.

A directed set is a pair (D,S), where D is a non-empty set and
< is a reflexive and transitive relation on D such that for a, B € D
theré'exiéts Y € D such that « <y and B < y. Notice that we indi-
cate that (a,Y) € < in the traditional manner by o < y. A subset C
of D is cofinal in D if for each o € D, there exists B € C such that
@ < B8, and a subset R of D is residual in D if there exists & € D
such that if 6 < y in D, then y € R. If no confusion seems likely,
we suppress the mention of < and write simply D for the directed set.

A net in a set X is a function from a directed set D into X.
We denote the image of a € D by X, and the net itself by {Xa}uED or

simply {xa} when no confusion seems likely. If T is a subset of X,
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then the net {x }aeD is frequently in T provided {a* : Xy € T} is

cofinal in D, and {x } is eventually in T if {a € D : xa,e T} is

residual in D.  If X lzeg space, x € X, and {xa} is a net in X, then
{Xa} clusters to x if {xa} is frequently in each meighborhood of x,
and {xa} converges to x if {xa} is eventually in each neighborhood

of x. In the latter case we write {xa} + X. .A subnet of a net

f: (D,S) > X is a pair (g,y), where g : (E,<) - X is a net.and

¢ : E~> D is a function such that g = f o y and for each a € D, there
exists 8 € E such that if B <y in E, themn a < y(y) in D.

There are some useful topological fesults pertaining to nets.

A net in a Hausdorffvspace converges to at most one point; A space X
is compact if and only if each net in X,hés a convergent subnet; A
subset C of a space X is closed if and only if for each net {x;} in
C converging to a point x € X, we have x € C; and a function f from
a space X into a space Y is continuous if and only if {xu} #ix-in &
implies {f(xa)} + f(x) in Y. Convergence can be replaced by cluster-
ing in Y or by clustering in both X and Y ia the last result.

If S is a Hausdorff space endowed with an associative multipli-
cation, then continuity of multiplication on S is equivalent to the
state?ent that for nets in S, {xa} + x and {ya} + y implies that
{xaya} + xy. Convergence of the net {xaya} can be replaced by clus-
tering if one of the nets {x } > x or {y,} > yis assumed only to
cluster to the giver point.

The following is one of the more useful topological results in

the area of topological semigroups [Wallace, 1951]:

1.1 Theorem. Let X, Y, and Z be spaces, A a compact subset
OfK, ‘B8 compaﬁt subset.of Y, £:: X x.Y & Z a continuous
'function,,and W an open subset of Z containing f(A x B).
Then there exists an open set U in X and an open set V in Y
such that AC U, B.CV, and f(U x V) C W.

Proof. Since f is continuous, f'l(W) is an open set in X x Y
containing A x B. For each (x,y) in A x B, there ex1st open sets M
and N in X and Y, respectively, such that x € M, y € N, and M x N C

f-l(W). Since B is compact, for a fixed x € A, there “are open sets
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Ml""’Mn in X containing x and corresponding open sets-Nl,.._.,Nn in
Y such that BC Q = N1 U eee U N . Let P = M1 N esea’n M . Then P
is open in X, Q is open in Y, x E P, BCQ, and P x QC f (W)

Since A is compact, there exists open sets Pl,...,Pm in X and corrés-
ponding Ql”"’Qm open in Y such that BC V = Q1 N-ee el Qln and A C
U= P1 UBesel-U Pm. It follows that,U and V are the required open
sets e : :

In 1.1, if one has the additional hypothesis that X is locally
compact, then U can be chosen so that U is compact, and likewise if

Y is locally compact, then 'V can be chosen so that V is compact.

-

1.2 Theorem. Let A and B be subsets of a topological
semigroup S.
(a) If A and B are compact, then AB is compact.

(b) If A and B are connected, then AB is connected.

Proof. This is immediate from the fact that AB = m(A x B),
where m : S x § > S-is multiplication. =

Observe that-"compact" or "cohne;ted" can be réplaced in 1.2 by
any topdlogical property which is productive and preserved by contin-

uous functions, e.g., '"arcwise connected".

. 1.3 Theorem. Let A and B be subsets of a topological
semigroup S. Then: ; : .
-(a) If B is closed, then {x € S : xA C.B} is closed;

(b) If B is compact, then {x €. S : A C xB} is closed;

(¢) If B is compact, then {x € S : xA C Bx}'is closed;
(d) If A is compact and B is open, then {x € S XA C B}
il 7 open, and [
(e)” If A 1s compact and B is closed then {x €S :

e xA N B # 0O} is closed

Proof. To prove (a], let C = {x €S : xA € B} and fix y € S\C.
Then there _exists a € A such that ya G.S\B Slnce S\B is open, ther:

, exist open sets M and N in s such that YyEM, a€ N and MN C S\B.

- In particular, we have that Ma C S\B It follows that y € M e s\c,

S\C is open, and hence Cis closed. : ;

3 e
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To prove (b), let F = {x € S : AC xB} and fix y € S\F. Then
a ¢ yB for some a € A. Since yB is compact, there exist disjoint i
open sets M and N such that a € M and yB € N. In view of 1.1, we
see that there exist open sets U and -V such that y € U, BC V, and
UV € N. In particular, UBC N, UBNM =0, a & UB, UC S\F, S\F is
open, and hence F is closed. 4 %{’ '
To prove (c), we apply 1.1 and the continuity of multiplicatian»
in S to conclude that {x € S : xA C Bx} is closed if B is compact.
To prove (d), we again apply 1.1.
To prove (e), we apply (d). ®

To illustrate the usefulness of ﬁets in topological semigroups,
we present a net argument as an alféﬁﬁdie p:qof1of 1.3 (8). » '

To prove (a) using nets, let {i;};hf gfﬂe; inC=1{x&€s :<x§§gu
B} such that {xa} + x with x € §, and‘let a € A, Then {xaa} + Xxa in
B, and since B is closed, xa € B. We obtain that xA C B, x € C, and
hence C is closed.

I1f S is a semigroup, a € S, and n is a positive integer, then
a" is defined recursively by al = a and ak*1 = aka.

An element e of a -semigroup S is called an idempotent if e2 = e.
T@e set of idempotents of S is denoted by E(S), or when no confusion
seems likely, simply by E.

The set of idempotents of a semigroup may be empty, as is the
case for the additive semigroup of positive integers. We will show~
later that if S is a compact semigroup, then E # tL Moreover, in
any topological semigroup S, we have that E is closed.  The latter
result we obtain as a consequence of the following topological re-:
sult: i

1.4 Theorem. Let X be a Hausdorff space and f : X > X
a continuous fuhctionf Then the set of fixed points of
f is closed in X.

Proof. Define g : X + X x X by g(x) = (f(x),x). Then g is
continuous and so g'l(A(X)) = {x €'X : £(x) = x} is closed, since A'

the diagonal of a Hausdorff space X is closed in X x X. ®
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1.5 Theorem. If S is a topological semigroup, then E(S:

is a closed subset of S.

Proof. This is immediate from 1.4 and the observation that E

is the set of fixed points of the continuous function x - x2. L

1.6 Theorem.  Let S be a topological semigroup. For e,
f.€ E(S), .define e < f if ef = fe = ¢, Then S is a

_partial order on E and is a closed sgbspacé Of 'S s

~ Proof. The argument that < is a partial order on E is straight
forward. To see that < is closed in § x §, let {(ea,fa)}‘+ (e,f) “in
S.x S with {(ea,fa)} in <. Then {ea} + e and {fd};+ f, and since E
is closed in S, we have that (g,f) € E x E. Moreover, eafa= faea=
e for all a, so that the continuity of}multiplication yields that
ef = fe = f. We conclude that (e,f) € < and < is closed. =

If S is a semigroup and a € S, thenfthe function x » xa is
called right translation by a and is denotéd Py and x +.axiis called
left translation by a and is denoted Ager It is clear that if S is a
topological semigroup and a € S, then both Pa and Aa are continuous.
Moreover, in the case that S is a topological semigroup and e € E,
we have thaﬁ pe'is a retraction of S onto Se, Ae is a retraction of
S onto eS, and A N = Ae ° po 1s a retraction of S onto. eSe.

A'semigroup S is said to be abelian (or commutative) if ab = ba
forzall a,*b €.85:

An element e of a semigroup S is called a left identity for S if
ex = x for'all x € S, a right identity for S'if xe = x for all x &S,
and an identity %or S if € is both a left and fight identity. Ob-
serve that if e is either a left or rigﬁt identity for S, then e € E.
Moreover, if S has a left identity e and a right identity f, then
e =ef = f is an identity'for S. Thus each semigroup S can have at
most one identity.

A semigroup which has an identity is called a monoid.

If S is a [topological] semigroup, we can adjéin an identity 1
to S [discretely] to form a new [topological] semigroup T = S U {1}.

Note that if S is a compact semigroup, then T is a compact semigroup.
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If S is a [topological] semigroup, then S1 =S if S has an
identity, and S U {1} [with 1 adjointed discretely] otherwise.

" An element f of a semigroup S is called a left zero for S if
fx = '€ for abl x €5, & right zero for S if xf =-fiforallox & S,
and a zero for S if f is both a left and right zero for S. As in
the case of a left or right identity, a left or right zero for a
semigroup S is an idempotent, and S can have at most one zero. If S
is a [topological] semigroup, we can adjoin'[discretely] a zero ele-
ment in a manner analogous to that of adjoining an identity. We al-
so define S0 to be the obvious analog of Sl.

If S is a semigroup with a zero 0, and x is an element of S
such that x" = 0 for some positive integer n, then x is called a
nilpotent element of S. ;

A band is a semigroup S such that S = E(S), and a semilattice
is a commutative band. Semilattices have been the topic for exten-
sive study in both of the fields of aigebraic and topological semi-
groups. A chapter of Volume II will be devoted to this topic.

We now turn to the presentation of a collection of examples of
topological semigroups. Notation used in these examples will be
applied throughout this book.

Let IN be the additive semigroup of positive integers with the
discrete topology. Then IN is a non-compact abelian topological
semigroup. Obéegye that E(IN) = O. Let IN* = IN U {=} denote the
one-point compactification of IN with X + @ = » + x = » for each
x € IN*. Then Dﬂ* is a compact abelian semigroup with E(IN*) = o fl
and «» is a zero.

Let IH denote the additive semigroup of non-negative real num-
bers with the usual topology. Then IH is a locally compact o-com-
pact connected abelian semigroup with E(IH) = {0}, and 0 is an
identity. Let Hi* = IH U {=} denote the one-point compactification
of IH with » + x = X + » = » for each x € IH*. Then IH* is a com-
pact connected abelian semigroup wifh E(Biﬁ) = {0,~}, 0 is an iden-
tity, and =« is a zero. .

One can convert any non-empty Hausdorff space S into a

topological semigroup by declaring that xy = x for all x, y € S. A
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semigroup with this multiplication is called a left zero semigroup.
If we define xy = y for all x, y € S, then S is called a rigﬁt zero
semigroup. For a left zero semigroup, the'multiplication on S is

simply first projection LY
is a right zero semigroup.

: 8§ xS +5, and second profection if S

If S is a Hausdorff space, z € S, and we define xy =z for all
X, y € S. Then S is called a zero semigroup , and is an abélian
topological semigroup with zero z and E = {z}.

There are three fundamental types of semigroups on an interval
which, as we will see later, are the building b10cks‘q{ Wh;t we will
call I-semigroups. We present these three basic eximﬁies‘now;

Let T = [0,1] be the real unit interval with the usual topology
and usual multiplication. Theh Iu is a compact abelian semigroup
called the usual interval. Note that 0 is a zero, 1 is an identity,

= {0,1}, and I has no nilpotént elements excépt 0. We shall show
later that I and Hi are the same semigroup in a certain sense.

Let In = [1/2,1] with the usual topology and multiplication
(x,y) » min{x,y}. Then Im is a compact semilattice, 0 is a\zero,
and 1 is an identity. The semigroup Im is called the min interval.

‘Let I = {1/2,1} with the usual topology and multiplication—
(x,y) -+ max{1/2 xy} where xy is the usual product of x and y. Then
In is a compact abellan semlgroup, E = {1/2,1}, 1/2 is a zero, 1 is
-an identity, and each element of I \{1} is n11potent -The semigroup
In is called the nllpotent 1nterval

" SUBSEMIGROUPS

A considerable portion of the study of topological semigroups deals
with determining the algebraic and iopological structure of subsemi-
groups of a given class of topological'semigroups. For example,
each compact connected monoid contains an irreducible subsemigroup,
and one of the major resuits in compact semigroup theory is that
irreducible semigroups are abelian [Hofmann and Mostert, 1966]. 1In
this section we develop the concept of a subsemigrsup and give some

examples.
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If A is a subset of a semigroup S and n € IN, then A" is
defined recursively by Al' = A and Ak+1 = AkA.

A subsemigroup of a semigroup S is a non-empty subset T of S
such that '!‘2 Py

Observe that a subsemigroup T of a [topological] semigroup S is
itself a [topological] semigroup under the restriction of the
multiplication on S to T x T.

If A is a subset of a semigroup S, then the set T of all finite
products of elements of A is the smallest subsemigroup of S contain-

ing A and T is called the subsemigroup of S generated by A. Observe

“that T=U {A" : n€ N}.

v

It is evident that the intersection (if non-empty) of a collec-
tion of subsemigroups of a semigroup S is again a subsemigroup of S.
To see that the union of subsemigroups need not be a subsemigroup,
consider the semigroup IN and the semigroups {2n : n € IN} and
{3n : n€ NJ. )

Certain subsemigroups of a given semigroup appear with such
regularity in the remainder of this book that they are isolated here
and some of their basic properties are presented.

If S is a semigr‘oup and x € S, then 8(x) = {x" : n€ IN} is an
ai)elian subsemigroup of S and is the subsemigroup of S§ generated by
x. If ACS, then Z(A) = (b€ S : ba = ab for all a € A} is called
the centralizer‘of A in S, and N(A) = {b €S : bA = Ab} is called
the normalizer of A in S. Tﬁe set Z(S) is called the center of S.
If N(A) = S, then A is said to be normal in S. 1f N(S) = S, then S
is called a wfml sem.ig_rqup.

B | 1s a topological semigroup and A and B are subsets of S,
observe that AB C AB. If A and B are both compact then AB = AB
since in this case, AB is closed and contains AB. 43

From the preceding observations one can conclude that if T is a

'sub's’eliigrb'up"df' a topological semigroup S, then T is also a subsemi-

group of S. Moie‘o‘ver’, if T is abelian, then so is T o' see "Thisy . ¢
let £:S xS +S xS be defined by £(x,y) = (xy,yx). Then f is

cont_in'{xous‘ and hence ‘f'l(A) is closed. Now if T is abelian, then
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Tkl S f'l(A), and since T x T =T x T.C f'l(A), we have that T is
abelian.

If A is a subset of a topological semigrdup S, then. the smallest
closed subsemigroup of S containing A is the closure of the subsemi-
group of S generated by A. In particular, if x € S, then r(x) =
8(x) is a closed subsemigroup of S called the monothetic subsemi-
group of S with generator x. If S = I'(x), then S is called a mono-

thetic semigroup.

1.7 Theorem. Let S be a topological semigroup, x € S, A

a non-empty subset of S, and e € E(S). Then:

(a) 6(x) is an abelian subsemigroup of S and is the
smallest subsemigroup of S containing x;

(b) T(x) is an abelian subsemigroup of S and is the
smallest closed subsemigroup of S containing x;

(c) eS is a closed subsemigroup of S with left identity
e; .

(d) Se is a closed subsemigroup of S with right identity
€3

(e) eSe=eSMNSe={x€S5 : ex =x =xe} is a closed
subsemigroup of S with identity e;

(f) Z(A) is a closed subsemigroup of S if Z(A) # o

(g8) Z(A) CNQA);

(h) N(A) is a subsemigroup of S if N(A) # O, and is
closed if A is compact;

(i) AS and SA are subsemigroup of S, and if S and A are
compact, then AS and SA are closed; and

() 1£ BE(S) C© N(S), ‘then E(S) C€'Z(s)y., =

We close this section by presenting some examples oflgemigroups
and mentioning certain of their distinguished subsehigrqus.

Let € denote the space of complex numbers with complex multipli-
cation. Then € is an abelian topological semigroup with a zero and
an identity and no other idempotents. Thp non-zero elements of €

form a non-closed subsemigroup as do the non-zero real elements of



