Concurrent
Programming

N ML

John H. Reppy

CONCURRENT PROGRAMMING IN ML

JOHN H. REPPY
Bell Labs, Lucent Technologies, Murray Hill, New Jersey

=

o

CAMBRIDGE

&P UNIVERSITY PRESS

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 2RU, UK www.cup.cam.ac.uk
40 West 20th Street, New York, NY 10011-4211, USA www.cup.org
10 Stamford Road, Oakleigh, Melbourne 3166, Australia
Ruiz de Alarcén 13, 28014 Madrid, Spain

© AT&T. All rights reserved. 1999

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 1999
Printed in the United States of America
Typefaces Times 10.75/14pt. and Courier System TgX [AU]

A catalog record for this book is available from the British Library.

Library of Congress Cataloging-in-Publication Data
Reppy, John H.
Concurrent programming in ML John H. Reppy.
p. cm.
Includes bibliographical references.

ISBN 0 521 48089 2 hardback

1. ML (Computer program language) 2. Parallel processing

(Electronic computers) 1. Title.
QA76.73.M6R47 1999
005.2'752 — dc21 99-20465
CIP

ISBN 0 521 48089 2 hardback

CONCURRENT PROGRAMMING IN ML

Concurrent Programming in ML presents the language Concurrent ML (CML), which sup-
ports the union of two important programming models: concurrent programming and func-
tional programming. CML is an extension of the functional language Standard ML (SML)
and is included as part of the Standard ML of New Jersey (SML/NJ) distribution. CML
supports the programming of process communication and synchronization using a unique
higher-order concurrent programming mechanism which allows programmers to define their
own communication and synchronization abstractions.

The main focus of the book is on the practical use of concurrency to implement naturally
concurrent applications. In addition to a tutorial introduction to programming in CML, this
book presents three extended examples of using CML for systems programming: a parallel
software build system, a simple concurrent window manager, and an implementation of
distributed tuple spaces.

This book includes a chapter on the implementation of concurrency using features pro-
vided by the SML/NJ system and provides many examples of advanced SML programming
techniques. The appendices include the CML reference manual and a formal semantics of
CML.

This book is aimed at programmers and professional developers who want to use CML,
as well as students, faculty, and other researchers.

Preface

This book is about the union of two important paradigms in programming languages,
namely, higher-order languages and concurrent languages. Higher-order programming
languages, often referred to as “functional programming” languages,' are languages that
support functions as first-class values. The language used here is the popular higher-
order language Standard ML (SML) [MTH90, MTHM97], which is the most prominent
member of the ML family of languages. In particular, the bulk of this book focuses
on concurrent programming using the language Concurrent ML (CML), which extends
SML with independent processes and higher-order communication and synchronization
primitives. The power of CML is that a wide range of communication and synchroniza-
tion abstractions can be programmed using a small collection of primitives.

A concurrent program is composed from two or more sequential programs, called
processes, that execute (at least conceptually) in parallel. The sequential part of the exe-
cution of these processes is independent, but they also must interact via shared resources
in order to collaborate on achieving their common purpose. In this book, we are con-
cerned with the situation in which the concurrency and process interaction are explicit.
This is in contrast with implicitly parallel languages, such as parallel functional lan-
guages [Hud89, Nik91, PvE93] and concurrent logic programming languages [Sha89].
The choice of language mechanisms used for process interaction is the key issue in con-
current programming language design. In this aspect, CML takes the unique approach
of supporting higher-order concurrent programming, in which the communication and
synchronization operations are first-class values, in much the same way that functions
are first-class values in higher-order languages.

Concurrent programming is an especially important technique in the construction of
systems software. Such software must deal with the unpredictable sequencing of external
events, often from multiple sources, which is difficult to manage in sequential languages.

11 choose the term “higher-order” to avoid confusion with “pure” (i.e., referentially transparent) functional languages.

X Preface

Structuring a program as multiple threads of control, one for each external agent or event,
greatly improves the modularity and manageability of the program. Concurrent program-
ming replaces the artificial total ordering of execution imposed by sequential languages
by a more natural partial ordering. The resulting program is nondeterministic, but this is
necessary to deal with a nondeterministic external world efficiently.

This book differs from most books on concurrent programming in that the underlying
sequential language, SML, is a higher-order language. The use of SML as the sequential
sub-language has a number of advantages. SML programs tend to be “mostly-functional”
and typically do not rely on heavy use of global state; this reduces the effort needed to
migrate from a sequential to a concurrent programming style. The high-level features
of SML, such as datatypes, pattern matching, the module system, and garbage collec-
tion, provide a more concise programming notation. Recent advances in implementation
technology allow us to take advantage of the benefits of SML, without sacrificing good
performance [SA94, Sha94, TMC*96]. One of the theses of this book is that efficient
system software can be written in a language such as SML.

History

The language design ideas presented in this book date back to the language PML [Rep88],
an ML dialect developed at AT&T Bell Laboratories as part of the Pegasus system [RG86,
GR92]. The purpose of the Pegasus project was to provide a better foundation for build-
ing interactive systems than that provided by the C/UNIX world circa 1985. We believed
then, and still do, that interactive applications are inherently concurrent, and that they
should be programmed in a concurrent language. This was the motivation for design-
ing a concurrent programming language. We finished an implementation of the Pegasus
run-time system before the design of PML was complete. We tested our ideas on this
run-time system by writing prototype applications in C with calls to our concurrency li-
brary. Our experience with these applications convinced us that the concurrency features
of PML should be designed to support abstraction. It was this design goal that led me to
develop “first-class synchronous operations” [Rep88].

Shortly thereafter, I began a graduate program at Cornell University, and started work-
ing with early versions of Standard ML of New Jersey (SML/NJ) [AM87, AM91]. In
the spring of 1989, Appel and Jim developed a new back-end for SML/NJ, based on
a continuation-passing style representation [AJ89, App92]. A key feature of this back-
end is that the program stack was replaced by heap-allocated return closures. In the
fall of 1989, this led to the addition of first-class continuations as a language exten-
sion in SML/NJ [DHMO91], which made it possible to implement concurrency primi-
tives directly in SMIL. Exploiting this feature, I implemented a coroutine version of the
PML primitives on top of SMIL/NJ [Rep89]. Others also exploited the first-class con-

Preface X1

tinuations provided by SML/NJ: Ramsey, at Princeton, implemented PML-like prim-
itives [Ram90], and Cooper and Morrisett, at Carnegie-Mellon, implemented Modula
2+ style shared-memory primitives [CM90]. Morrisett and Tolmach later implemented a
multiprocessor version of low-level shared-memory primitives [MT93].

While first-class continuations provided an important mechanism for implementing
concurrency primitives, they did not provide a mechanism for preemptive scheduling,
which is key to supporting modular concurrent programming. To address this problem, I
added support for UNIX style signal handling to the SML/NJ run-time system [Rep90].
With this support, I modified my coroutine version of the PML primitives to include pre-
emptive scheduling, and the first version of CML was born. It was released in November
of 1990. This implementation evolved into the version of CML that was described in
the first published paper about CML [Rep91a], and was the subject of my doctoral dis-
sertation [Rep92]. In February of 1993, version 0.9.8 of CML was released as part of
the SML/NJ distribution. After that release, a major effort was undertaken to redesign
the Basis Library provided by SML implementations [GR99]. This effort grew into what
is now known as Standard ML 1997 (SML’97), which includes the new basis library,
as well as a number of language improvements and simplifications. From the program-
mer’s perspective, the most notable of these changes is the elimination of imperative
type variables and the introduction of new primitive types for characters and machine
words [MTHM97]. CML has also been overhauled to be compatible with SML’97 and
the new Basis Library, and to use more uniform naming conventions. Although some of
the names have changed since version 0.9.8, the core features and concepts are the same.
Most recently, Riccardo Pucella has ported CML to run on Microsoft’s Windows NT
operating system.

Since its introduction, CML has been used by many people around the world. Uses in-
clude experimental telephony software [FO93], as a target language for a concurrent con-
straint programming language [Pel92], as a basis for distributed programming [Kru93],
and for programming dataflow networks [Cub94b, Cub94a]. My own use of CML has fo-
cused on the original motivation of the Pegasus work: providing a foundation for user in-
terface construction. Emden Gansner and I have constructed a multithreaded X Window
System toolkit, called eXene, which is implemented entirely in CML [GR91, GR93].

CML has also been the focus of a fair bit of theoretical work. The semantics of the
PML subset of the language has been formalized in several different ways [BMT92,
MM94, FHJ96]. My dissertation also presents a full semantics of the CML concur-
rency mechanisms [Rep91b, Rep92] (Appendix B presents this semantics, but without
the proofs). Nielson and Nielson have worked on analyzing the communication patterns
(or topology) of CML programs [NN93, NN94] as well as on control-flow analysis for
CML [GNNO97]. Such analysis can be used to specialize communication operations to
provide better performance.

Xii Preface

While CML is not likely to change, there will continue to be improvements and en-
hancements to its implementation. The most important improvement is to provide the
benefits of kernel-level threads to CML applications (e.g., to mask the latency of system
calls). To provide these benefits requires a new run-time system, which is under con-
struction as of this writing. This new run-time system should also make a multiprocessor
implementation of CML possible. The other major effort is to build useful libraries,
particularly in the area of distributed programming and network applications. The CML
home page (see below) will provide information about these, and other, improvements as
they become available.

Getting the software

The SML/NJ system, CML, eXene, and other related software are all available, free of
charge, on the internet.

Information about the latest and greatest version of CML, as well as user documenta-
tion, technical papers, and the sample code from this book can be found at the Concurrent
ML home page:

http://www.cs.bell-labs.com/~jhr/sml/cml/index.html

CML is also available as part of the SML/NJ distribution, which can be found at the
SML/NJ home page:

http://cm.bell-labs.com/cm/cs/what/smlnj/index.html

This page also provides links to the SML/NJ Library documentation and to the online
version of the Standard ML Basis Library manual.

Overview of the book

This book was written with several purposes in mind. The primary purpose of this book
is to promote the use of CML as a concurrent language; it provides not only a tutorial
introduction to the language, but also examples of more advanced uses. Although it is
not designed as a teaching text, this book does provide an introduction to Concurrent
Programming, and drafts of it have been used in courses at various universities. Because
of the strong typing of SML and the choice of concurrency primitives, CML provides a
friendlier introduction to concurrent programming than in many other languages. CML
also provides a good example of systems programming using SML/NJ, and I hope that
this book will inspire other non-traditional uses of the language. This book does not make
an attempt to introduce or describe SML, as there are a number of books and technical

Preface xiii

reports that already fill that purpose; a list of these can be found in the Chapter 1 notes
(and on the SML/NJ home page).

The book is loosely organized into three parts: an introduction to concurrent program-
ming, an expository description of CML (essentially a CML tutorial), and finally, a
practicum consisting of example applications.

The first chapter motivates the rest of the book by arguing the merits of concurrent pro-
gramming. Chapter 2 introduces various concepts and issues in concurrent programming
and concurrent programming languages.

The next four chapters focus on the design and use of CML. First, Chapters 3 and 4
give a tutorial introduction to the basic CML features and programming techniques.
Chapter 5 expands on this discussion by exploring various synchronization and commu-
nication abstractions. Finally, Chapter 6 describes the rationale for the design of CML;
this chapter is mainly intended for those interested in language design issues, and may
be skipped by the casual reader.

The subsequent three chapters present extended examples of CML programs. While
space restrictions constrain the scope of these examples, each is a representative of a nat-
ural application area for concurrent programming. Furthermore, they provide examples
of complete CML programs, rather than just program fragments. Chapter 7 describes
a controller for a simple parallel software-build system. This illustrates the use of con-
currency to manage parallel system-level processes. The next example, in Chapter 8,
is a toy concurrent window manager, which illustrates the use of concurrency in user
interface software. Chapter 9 describes an implementation of distributed tuple spaces.
This provides both an illustration of how a distributed systems interface might fit into the
CML framework, and how systems programming can be done in SML and CML.

The book concludes with a chapter on the implementation of concurrency in SML/NJ
using its first-class continuations. SML/NJ provides a fairly unique test-bed for exper-
imenting in concurrent language design, and this chapter provides a “how-to” guide for
such experimentation.

There are two appendices, which provide a more concise description of CML. Ap-
pendix A is an abridged version of the CML Reference Manual; the complete manual is
available from the CML home page. Appendix B gives an operational semantics for the
concurrency features of CML, along with statements of some of its properties (proofs
can be found in my dissertation [Rep92]).

Citations and a discussion of related work are collected in “Notes” sections at the end
of each chapter. These notes also provide some historical context. The text is illustrated
with numerous examples; the source code for most of these is available from the CML
home page.

Xiv Preface

Acknowledgements

This book has taken a long time for me to write, and many people have helped along
the way. Foremost, I would like to thank my wife, book coach, and primary proofreader,
Anne Rogers. Without her encouragement, I doubt this book would have been finished.
My graduate advisor at Cornell University, Tim Teitelbaum, provided support for the
research that produced CML.? Andrew Appel and Dave MacQueen encouraged me to
start this project, and have helped with implementation issues.

In addition to Anne, a number of other people provided feedback on portions of the
text. Emden Gansner and Lorenz Huelsbergen performed the second pass of proofreading
on many of the chapters. Greg Morrisett provided detailed feedback about Chapter 10,
and Jon Riecke helped with the semantics in Appendix B. Nick Afshartous, Lal George,
Prakash Panangaden, and Chris Stone also provided feedback on various parts of the
book. Riccardo Pucella has helped with recent versions of the CML implementation,
including the Windows NT port. I would also like to thank my editor at Cambridge
University Press, Lauren Cowles, for her patience with this book — I hope the final
result was worth the wait. I would also like to thank the many users of CML, who found
those pesky bugs and used the language in ways that I never envisioned.

John H. Reppy
Murray Hill, NJ

2While a graduate student at Cornell, I was supported, in part, by the NSF and ONR under NSF grant CCR-85-14862,
and by the NSF under NSF grant CCR-89-18233.

Legend

Running process

Blocked process

Synchronous communication

Sender blocks

Receiver blocks

Multicast communication

Spawn a process
Process termination
Asynchronous communication

~~-x4 No blocking

b -~ ; Receiver blocks

Preface

Legend

1 Introduction

1.1 Concurrency as a structuring tool

1.2 High-level languages

1.3 Concurrent ML

2 Concepts in Concurrent Programming
2.1 Processes

2.2 Interference

2.3 Correctness issues in concurrent programming
2.4 Shared-memory languages

2.5 Message-passing languages

2.6 Parallel programming mechanisms

3 An Introduction to Concurrent ML
3.1 Sequential programming

3.2 Basic concurrency primitives

3.3 First-class synchronous operations

34 Summary

4 CML Programming Techniques

4.1 Process networks

4.2 Client-server programming

5 Synchronization and Communication Mechanisms

5.1

Contents

Other base-event constructors

page ix

XV

~N NN =

12
13
14
16
22
31

39
39
40
52
60

63
63
72

85
85

vi

5.2
53
54
5.5
5.6

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3
7.4
7.5
7.6

8.1
8.2
8.3
8.4
8.5
8.6
8.7

9.1
9.2
9.3
94
9.5
9.6
9.7

Contents

External synchronous events
Synchronizing shared-memory
Buffered channels

Multicast channels
Meta-programming RPC protocols

The Rationale for CML

Basic design choices

First-class synchronous operations
Extending PML events

The expressiveness of CML
Discussion

A Software Build System

The problem

The design

Building the dependency graph
Creating the graph nodes
Parsing makefiles

Putting it all together

A Concurrent Window System
Overview

Geometry

The display system

The Toy Window System architecture

Some simple components

The implementation of a window manager

A sample application

A CML Implementation of Linda
CML-Linda

An implementation overview

The protocols

The major components

The network layer

The server layer

The client layer

87
91
97
99
105

117
117
120
124
127
129

131
131
133
134
137
139
140

145
146
146
147
152
156
163
173

183
184
187
190
193
194
204
215

Contents

10 Implementing Concurrency in SML/NJ
10.1 First-class continuations

10.2 Coroutines

10.3 Shared-memory concurrency

10.4 Simple message passing

10.5 First-class synchronous operations
10.6 Scheduling issues

Appendix A A CML Reference
Appendix B The Semantics of CML
Bibliography

Index

vii

221
221
223
229
231
236
244

249
275
293
301

1

Introduction

Concurrent programming is the task of writing programs consisting of multiple inde-
pendent threads of control, called processes. Conceptually, we view these processes as
executing in parallel, but in practice their execution may be interleaved on a single pro-
cessor. For this reason, we distinguish between concurrency in a programming language,
and parallelism in hardware. We say that operations in a program are concurrent if they
can be executed in parallel, and we say that operations in hardware are parallel if they
overlap in time.

Operating systems, where there is a need to allow useful computation to be done in
parallel with relatively slow input/output (I/O) operations, provide one of the earliest
examples of concurrency. For example, during its execution, a program P might write
a line of text to a printer by calling the operating system. Since this operation takes
a relatively long time, the operating system initiates it, suspends P, and starts running
another program Q. Eventually, the output operation completes and an interrupt is re-
ceived by the operating system, at which point it can resume executing P. In addition to
introducing parallelism and hiding latency, as in the case of slow I/O devices, there are
other important uses of concurrency in operating systems. Using interrupts from a hard-
ware interval timer, the operating system can multiplex the processor among a collection
of user programs, which is called time-sharing. Most time-sharing operating systems
allow user programs to interact, which provides a form of user-level concurrency. On
multiprocessors, the operating systems are, by necessity, concurrent programs; further-
more, application programs may use concurrent programming to exploit the parallelism
provided by the hardware.

One important motivation for concurrent programming is that processes are a useful
abstraction mechanism: they provide encapsulation of state and control with well-defined
interfaces. Unfortunately, if the mechanisms for concurrent programming are too expen-
sive, then programmers will break the natural abstraction boundaries in order to ensure
acceptable performance. The concurrency provided by operating system processes is

2 1 Introduction

the most widespread mechanism for concurrent programming. But, there are several
disadvantages with using system-level processes for concurrent programming: they are
expensive to create and require substantial memory resources, and the mechanisms for
interprocess communication are cumbersome and expensive.! As a result, even when
faced with a naturally concurrent task, application programmers often choose complex
sequential solutions to avoid the high costs of system-level processes.

Concurrent programming languages, on the other hand, provide notational support for
concurrent programming, and generally provide lighter-weight concurrency, often inside
a single system-level process. Thus, just as efficient subroutine linkages make proce-
dural abstraction more acceptable, efficient implementations of concurrent programming
languages make process abstraction more acceptable.

1.1 Concurrency as a structuring tool

This book focuses on the use of concurrent programming for applications with natu-
rally concurrent structure. These applications share the property that flexibility in the
scheduling of computation is required. Whereas sequential languages force a total order
on computation, concurrent languages permit a partial order, which provides the needed
flexibility.

For example, consider the xrn program, which is a popular UNIX program that pro-
vides a graphical user interface for reading network news. It is both an example of an
interactive application and of a distributed-systems application, since it maintains a con-
nection to a remote news server. This program has a rather annoying “feature” that is a
result of its being programmed in a sequential language.? If xrn loses its connection to
the remote news server (because the server goes down, or the connection times out), it
displays a message window (or “dialog box”) on the screen to inform the user of the lost
connection. Unfortunately, after putting up the window, but before writing the message,
Xrn attempts to reestablish the connection, which causes it to hang until the server comes
back on line. Thus, you have the phenomenon of a blank message window appearing on
the user’s screen, followed by a long pause, followed by the simultaneous display of two
messages: the first saying that the connection has been lost, and a second saying that the
connection has been restored. Besides being an example of poor interface design, this
illustrates the kind of sequential orderings that concurrent programming easily avoids.

't should be noted that most recent operating systems provide support for multiple threads of control inside a single
protection domain.
2This anecdote refers to version 6.17 of xrn.

1.1 Concurrency as a structuring tool 3

1.1.1 Interactive systems

Interactive systems, such as graphical user interfaces and window managers, are the pri-
mary motivation of much of the work described in this book, and the author believes that
they are one of the most important application areas for concurrent programming. Inter-
active systems are typically programmed in sequential languages, which results in awk-
ward program structures, since these programs are naturally concurrent. They must deal
with multiple asynchronous input streams and support multiple contexts, while maintain-
ing responsiveness. In the following discussion, we present a number of scenarios that
demonstrate the naturally concurrent structure of interactive software.

User interaction

Handling user input is the most complex aspect of an interactive program. An application
may be sensitive to multiple input devices, such as a mouse and keyboard, and may
multiplex these among multiple input contexts (e.g., different windows). Managing this
many-to-many mapping is usually the province of User Interface Management System
(UIMS) toolkits. Since most UIMS toolkits are implemented in sequential languages,
they must resort to various techniques to emulate the necessary concurrency. Typically,
these toolkits use an event-loop that monitors the stream of input events and maps the
events to call-back functions (or event handlers) provided by the application programmer.
In effect, this structure is a poor-man’s concurrency: the event-handlers are coroutines,
and the event-loop is the scheduler.

The call-back approach to managing user input leads to an unnatural program structure,
known as the “inverted program structure,” where the application program hands over
control to the library’s event-loop. While event-driven code is sometimes appropriate
for an application, this choice should be up to the application programmer, and not be
dictated by the library.

Multiple services

Interactive applications often provide multiple services; for example, a spreadsheet might
provide an editor for composing macros, and a window for viewing graphical displays
of the data, in addition to the actual spreadsheet. Each service is largely independent,
having its own internal state and control-flow, so it is natural to view them as independent
processes.

An additional benefit of using process abstraction to structure such services is that
it makes replication of services fairly easy. This is because processes are reentrant by
their very nature (i.e., they typically encapsulate their own state). In our spreadsheet
example, supporting multiple data sets or graphical views should be as easy as spawning
an additional process.

This is a situation where an “object-oriented”” language might also claim benefits, since

