INTRODUCTION
TO COMPUTER
SCI ENCE THIRD EDITION

< / ,/ 0, g
7 ‘,«‘///? *.\!“,// { # 51 " \) \
QL

i

Neill Graham

4 M—q

SN

Introduction to Computer Science
THIRD EDITION

Neill Graham

WSS MRR

E906257;

West Publishing Company
St. Paul New York San Francisco Los Angeles

Copyediting:
Deborah Drolen Jones

Interior design:
Biblio Book Design

Artwork:
Editing, Design & Production, Inc.

Composition:
The Clarinda Company

Cover photograph:
Floyd Rollefstad, Laser Fantasy Production

COPYRIGHT © 1979 BY WEST PUBLISHING CO.
COPYRIGHT © 1982 BY WEST PUBLISHING CO.

COPYRIGHT © 1985 By WEST PUBLISHING CO.
50 West Kellogg Boulevard
P.O. Box 43526
St. Paul, Minnesota 55164

All rights reserved
Printed in the United States of America

Library of Congress Cataloging in Publication Data

Graham, Neill, 1941—
Introduction to computer science.

Bibliography: p.

Includes index.

1. Electronic digital computers. 2. Electronic data
processing. |. Title.
QA76.5.G658 1985 001.64 84-21940
ISBN 0-314-85240-9

Introduction to Computer Science
THIRD EDITION

Preface

his book is intended for a two-semester introduc-
tory course in computer science. No mathematical
preparation is required beyond the usual elemen-
tary and high school courses. Although high
school algebra is desirable, it is not necessary because the concepts that it might
contribute—variables, functions, and expression evaluation—are developed in detail
in this book. Most of the problems require no'mathematical background. The occa-
sional mathematically oriented problem, such as computing binomial coefficients, is
intended only for students with sufficient mathematical background for the problem
to be meaningful. The chapter on numerical methods requires somewhat greater
mathematical sophistication than does the rest of the book.

The book has been completely rewritten for the third edition, with extensive
changes in both content and presentation. Although I have not attempted to adhere
rigidly to any one set of guidelines, the revision has been influenced by the course
descriptions for CS1 and CS2 in the Association for Computing Machinery’s Curric-
ulum 78, the course description for the advanced placement test in computer sci-
ence, currently available textbooks, and the recommendations of those who com-
mented on the second edition. The following are some of the changes made in the
third edition.

The first two chapters of the book present several algorithms for solving easily
visualized problems such as sorting three names into alphabetical order and solving
the Towers-of-Hanoi problem. Many instructors felt that the traditional Euclidean
algorithm, with which the previous editions began, was too difficult for students
without extensive mathematical backgrounds. These early algorithms are written in
an Englishlike pseudolanguage to avoid all problems with the technicalities of an
algorithmic language.

xi

Preface

xii

A new chapter on problems, problem-solving techniques, and their relation to
the principles of algorithm construction has been included. The chapter on software
design and testing has been expanded to discuss a number of concepts of modern
software engineering, such as the software development life cycle, simulation of
specifications, walkthroughs, correctness proofs, and program synthesis.

The use of assertions for understanding and verifying algorithms has been intro-
duced from the outset and is referred to throughout the book. Although algorithm
verification is discussed and illustrated, the emphasis is on assertions as an aid to
understanding rather than as a tool for producing formal proofs of correctness.

Algorithms and programs are typeset in the boldface-italics form of Algol and
Pascal rather than in the uppercase-letters-only form used in previous editions.

Data types, type definitions, and required variable declarations have been intro-
duced into the algorithmic language. In the previous editions, types were treated
informally and declarations were usually optional. This approach no longer seems
appropriate in view of the importance of types and type checking in modern program-
ming languages such as Pascal and Ada.

The discussion of parameter passing for procedures and functions has been com-
pletely revised. Parameters are classified as in, out, and in out. Parameter transmis-
sion by copy and by reference are both discussed. As in the second edition, the call-
by-name mechanism is not discussed. Although call by name is of theoretical and
historical interest, it plays no role in modern programming languages.

The discussion of global variable access—access to variables declared outside of
a function or procedure—is expanded to include three possibilities: (1) common dec-
larations as in FORTRAN and some other languages; (2) nested procedure declara-
tions as in Algol and Pascal; and (3) modules encapsulating procedures, functions,
and declarations, as in such languages as Modula-2, Ada, and UCSD Pascal. The
third alternative is used throughout the remainder of the book to present many data
structures as implementations of abstract data types. Empbhasis is placed on the prin-
ciple of information hiding as a guide to dividing a program into modules.

The discussions of data structures have been modified to emphasize depth rather
than breadth; instead of trying to survey as many data structures and as many ways
of representing a given structure as possible, fewer structures and representations are
treated in greater detail.

The elements of algorithm analysis are introduced in the context of comparing
the efficiency of different searching and sorting routines.

The two chapters on numerical methods have been combined into a single chap-
ter, which provides sufficient coverage at the level of an introductory computer sci-
ence course. Numerical integration is now illustrated by finding the area under a
curve rather than by solving differential equations. Since it is assumed that students
studying this chapter have a background in college algebra and trigonometry, stan-
dard mathematical concepts and notations are used more freely than in the other
chapters. No previous knowledge of calculus is required; the chapter introduces the
derivative as the slope of a tangent line and the definite integral as the area under a
curve.

Part I introduces computers, information processing, computer applications, al-
gorithms, and problem solving. Algorithms whose operation can be readily visualized

Preface

xiii

are presented in an Englishlike pseudolanguage. A sequential algorithm and an iter-
ative algorithm are discussed in Chapter 1, and a recursive algorithm is discussed in
Chapter 2. Since the recursive algorithm is somewhat more difficult to understand
than the other two, some instructors may wish to postpone its discussion until Chap-
ter 10, which also discusses recursion.

Part II covers computer hardware, software, and information representation. In-
structors differ as to how deeply they wish to go into the technicalities of information
representation. To make it as easy as possible to cover only the material desired, the
topics in Chapter 4 are arranged in order of increasing difficulty. Section 4.1 and the
discussion of binary addition and subtraction in Section 4.2 are elementary. The rest
of Section 4.2 and Sections 4.3 and 4.4 are of intermediate difficulty. Sections 4.5
and 4.6 are somewhat more difficult still. Section 4.5 is not prerequisite to Section
4.6, so one can study the hypothetical computer without taking up floating-point-
number representations.

Part III on algorithm construction is the heart of the book. Data types, constants,
and variables are introduced, along with the fundamental manipulations of input,
output, assignment, and expression evaluation. This part is organized around the
basic control structures: sequencing, selection, repetition, and function and procedure
invocation. Repetition is taken up before selection since much more interesting and
realistic examples can be presented once repetition has been mastered. Part III ends
with a chapter on program design and testing. This chapter reviews and systematizes
the algorithm construction techniques that have been used so far and discusses the
additional problems that arise in large programming projects.

In Part IV the emphasis switches from control structures to data structures. Type
definitions and structured types are introduced, and records, files, arrays, strings, and
linked structures are explored. Chapter 13 introduces arrays and describes searching
and sorting of one-dimensional arrays. Since different searching and sorting algo-
rithms can differ dramatically in efficiency, this chapter seems a good place to intro-
duce the elements of algorithm analysis. Chapter 14, on stacks and queues, intro-
duces these data structures not only for their own interest but as examples of abstract
data types defined by means of the operations that can be carried out on their values.

Part V provides a brief introduction to numerical analysis. Included are discus-
sions of roundoff and truncation errors, solving nonlinear equations, solving systems
of linear equations, and numerical evaluation of definite integrals.

I wish to thank the following persons for their comments on the second edition
and their suggestions for the third edition: Dian Lopez, University of Minnesota
(Morris Campus); John Leeson, University of Central Florida; Jean Rogers, Univer-
sity of Oregon; and David Weldon, Winona State University.

Contents

Preface xi

BN Part| Computers, algorithms, and problem solving 1

Chapter 1 Computers, information, and algorithms 3

1.1 Information, symbols, and data 5

1.2 Examples of information processing 6
1.3 Properties of algorithms 9

1.4 Two algorithms 12

Chapter 2 Problems, algorithms, and recursion 27

2.1 Problem theory 27

2.2 Polya’s four steps for solving a problem 35
2.3 Problem-solving techniques 39

2.4 Recursion 51

NN Part Il Computer hardware and software 65

Chapter 3 Computer hardware 67

3.1 The parts of a computer—an overview 67
3.2 The central processing unit 69

Contents

vi

3.3
3.4
3.5

41
4.2
4.3
4.4
4.5
4.6

5:1
5.2
5.3

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3
7.4
7.5
7.6

Computer memory 71
Input and output devices 74
Classifications of computers 78

Chapter 4 Information representation 81

Binary codes 81

Operations on binary values 87
Octal and hexadecimal notation 90
Signed numbers 94

Floating-point numbers 97

A simple computer 100

Chapter 5 Computer software 117

Programming languages 118
The operating system 123
Concurrent execution 129

Part lll Principles of algorithm construction
Chapter 6 Values, constants, and expressions 139

Data types 139
Output 144
Identifiers, constants, and algorithms 147
Arithmetical operations and expressions 151
Functions 156
Pascal Supplement 160

Data types 161

Output 164

Identifiers 169

Constant definitions 170

Program format 171

Expressions 173

Chapter 7 Variables, assignment, and input 177

Variables 177

Declarations 179

Assignment 180

Variables in expressions 182

Input and output 187

Interactive and batch processing 190

137

Contents

7.7

8.1
8.2
8.3
8.4
8.5

9.1
9.2
9.3
9.4
9.5

10.1
10.2
10.3
10.4
10.5

vii

Four algorithms 192

Pascal Supplement 206
Variables and declarations 206
Assignment and expressions 207
Input and output 208
Prompts and responses 213
Example programs 213

Chapter 8 Repetition 219

The for construction 220
Algorithms using the for construction 223
The while construction 231
Algorithms using the while construction 235
The repeat construction 241
Pascal Supplement 248
The for statement 248
Compound statements 249
Programs using the for statement 251
Conditions, Boolean expressions, and relational
operators 251
The while statement 255
Programs using the while statement 257
Reading data and the eof predicate 258
The repeat statement 261

Chapter 9 Selection 265

One- and two-way selection 265
Algorithms using one- and two-way selection 269
Multiway selection 278
Compound conditions and Boolean operators 290
Algorithms using Boolean operators 292
Pascal Supplement 303

One- and two-way selection 303

Multiway selection 309

Boolean operators 317

Chapter 10 Subalgorithms 321

Functions 322

Procedures 328

Input, output, and input/output parameters 329
Parameter-passing methods 332

An algorithm for playing craps 336

Contents

viii

10.6
10.7
10.8

111

112

11.3
11.4
11.5
11.6
1.7
11.8

121
12.2
12.3
12.4
12,5
12.6

13.1
13.2

Scope and lifetime 346
Recursion revisited 371
Verifying algorithms that use functions and procedures 382
Pascal Supplement 389
Functions and procedures 389
Parameters and parameter passing 393
The program craps 396
Access to variables 400
Recursion 414

Chapter 11 Software design, coding, and testing 419

Software engineering 420

Characteristics of high-quality software 421
Requirements analysis 423

Specification 426

Design 427

Implementation 439

Validation, verification, and testing 449
Maintenance 464

Pascal Supplement 467

Part IV Data structures 475
Chapter 12 Types, records, and files 477

Type definitions 478
Record types 478
Files and streams 487
File types 491
Sequential file processing 497
Three examples of sequential file processing 498
Pascal Supplement 515
Type definitions 516
Enumerated types 516
Subrange types 517
Operations on values of ordinal types 519
Set types 520
Record types 523
File types 528

Chapter 13 Arrays 547

One-dimensional arrays 547
Elements of array processing 550

Contents

13.3
13.4
13.5
13.6

14.1
14.2
14.3
14.4
14.5
14.6

151
15.2
15.3
15.4
15.5
15.6

16.1
16.2
16.3
16.4
16.5
16.6
16.7

ix

Searching arrays 555

A table-handling module 571

Sorting 578

Multidimensional arrays 589

Pascal Supplement 601
One-dimensional arrays 601
Multidimensional arrays 603
Examples 604

Chapter 14 Stacks and queues 615

Stacks 616

Array implementations of stacks 620
Applications of stacks 631

Queues 643

Array implementations of queues 646
Applications of queues 656

Pascal Supplement 664

Chapter 15 Strings 673

Fixed-length strings 674
Variable-length strings 677
Operations on variable-length strings 678
Implementation considerations 684
A string-processing module 691
Substitution for parameters 713
Pascal Supplement 725
Packed types 725
String types 727
The string-processing module 728

Chapter 16 Linked structures 741

Pointer types 742
Linked lists 748
Applications of linked lists 750
Trees 770
Notations and traversals 774
Linked representation of trees 782
Binary search trees 790
Pascal Supplement 806

Pointer types 806

Summary of type system 822

Contents

X

171
17.2
17.3
17.4

Part V Numerical methods 825
Chapter 17 Errors, equations, and areas

Numerical errors 827

Nonlinear equations 831
Systems of linear equations 842
Numerical integration 856
Pascal Supplement 868

Index 879

827

Part |
Computers, algorithms,
and problem solving

Computers, information,
and algorithms

he idea of the computer can be traced back to the
early nineteenth century, when the British mathe-
matician Charles Babbage proposed a mechanical
‘‘Analytical Engine’’ to carry out mathematical
calculations under the control of punched cards. The first electronic computers were
built in the early 1940s, about a century after Babbage’s original proposal.

For many years, the cost, size, and power consumption of computers restricted
their use to large organizations, and it was difficult or impossible for individuals to
gain access to them. In the mid 1970s, however, progress in microelectronics led to
the development of small, low-cost, microcomputers or personal computers. The
same developments gave rise to embedded computers, which can be incorporated in
consumer products such as microwave ovens, television sets, cameras, automobiles,
and video games. Today most people living in developed countries have probably
used a computer, although in the case of embedded computers they may not be aware
that they have done so.

The first computers were built to carry out the complex numerical calculations
of science, engineering, and mathematics. People quickly realized, however, that
computers are not limited to numbers, but are general-purpose machines for storing
and manipulating information. In principle, any information-processing task can be
carried out by a computer if we can code the information to be processed in symbols
the computer can manipulate and if we can describe precisely the manipulations to
be carried out. In practice, factors such as the memory (information storage) capacity
of a computer, the speed with which it operates, and the means by which it com-

3

Chapter 1

4

municates with the outside world determine whether a particular computer is suitable
for a particular information-processing task.

A computer operates under the control of a set of detailed, step-by-step instruc-
tions called a program. Program control is responsible for the computer’s enormous
versatility: by changing the program we can drastically change the information-pro-
cessing task the computer carries out. With one program a computer might control a
robot; with another it might print workers’ paychecks; with still another it might play
a game with the user. The other side of this coin, however, is that we must write or
purchase* a program for every job we want the computer to do for us. The programs,
or software, for a computer system may cost far more than the computing machinery,
or hardware.

Programs are to computers what phonograph records are to phonographs. The
program determines the behavior the computer will exhibit, just as the record deter-
mines the sounds that the phonograph will produce. Changing the program changes
the computer’s behavior, just as changing the record makes the phonograph play a
different tune. What’s more, we tend to attribute the behavior exhibited to the pro-
gram rather than to the computer, just as we attribute the music to the record rather
than to the phonograph. For example, we might say that a particular program plays
chess and that we enjoy a particular record, instead of making the more precise
statements that the computer plays chess under the control of the program and that
we enjoy the sounds produced by the phonograph when a particular record is played.

To summarize, no matter how much computers differ in size, cost, and internal
construction, they all have the following two characteristics in common:

1. A computer is a general-purpose information processor.

2. A computer works under the control of a program—a set of detailed, step-
by-step instructions for the processing to be done.

These two characteristics of computers determine the subject matter of computer
science. Since computers process information, computer science studies data struc-
tures—means for representing information in a form suitable for computer process-
ing. And since a computer works under the control of a detailed set of instructions,
computer science studies algorithms, sets of instructions for carrying out particular
information-processing tasks.

The discipline that we know as computer science in the United States is known
in many other countries as information science or informatics. The well-known Dutch
computer scientist E. W. Dijkstra advocates the term computing science. These al-
ternate names emphasize that computer science is more concerned with the tech-
niques of information processing than with the technical details of the machines that
carry out that processing.

*Some programs may be permanently built into a computer, some may be included in the
purchase price of the computer, and some may be available through users’ groups—associa-
tions formed by persons who use a particular kind of computer. Mostly, however, computer
users must write or buy the programs they need.

