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Preface

The present book is the outcome of a seminar organized by the editors, sponsored
by the Gesellschaft fiir Informatik e.V. (GI) and held in Dagstuhl, 13-16 April
2004.

GI-Dagstuhl-Seminars are organized on current topics in computer science
that are not yet well covered in textbooks. Most importantly, this gives young
researchers an opportunity to become actively involved in such topics, and to
produce a book that can provide an introduction for others as well.

The participants of this seminar were assigned subtopics on which they did
half a year of research prior to the meeting. After a week of presentations and
discussion at Schloss Dagstuhl, slightly more than another half-year was spent
on writing the chapters. These were cross-reviewed internally and blind-reviewed
by external experts. Since we anticipate that readers will come from various
disciplines, we would like to emphasize that it is customary in our field to order
authors alphabetically.

The intended audience consists of everyone interested in formal aspects of
network analysis, though a background in computer science on, roughly, the
undergraduate level is assumed. No prior knowledge about network analysis is
required. Ideally, this book will be used as an introduction to the field, a reference
and a basis for graduate-level courses in applied graph theory.

First and foremost, we would like to thank all participants of the seminar
and thus the authors of this book. We were blessed with a focused and deter-
mined group of people that worked professionally throughout. We are grateful
to the GI and Schloss Dagstuhl for granting us the opportunity to organize the
seminar, and we are happy to acknowledge that we were actually talked into
doing so by Dorothea Wagner who was then chairing the GI-Beirat der Uni-
versitatsprofessor(inn)en. We received much appreciated chapter reviews from
Vladimir Batagelj, Stephen P. Borgatti, Carter Butts, Petros Drineas, Robert
Elsasser, Martin G. Everett, Ove Frank, Seokhee Hong, David Hunter, Sven
O. Krumke, Ulrich Meyer, Haiko Miiller, Philippa Pattison and Dieter Raut-
enbach. We thank Barny Martin for proof-reading several chapters and Daniel
Fleischer, Martin Hoefer and Christian Pich for preparing the index.

December 2004 Ulrik Brandes
Thomas Erlebach



List of Contributors

Andreas Baltz
Mathematisches Seminar
Christian-Albrechts-Platz 4
University of Kiel

24118 Kiel, Germany

Nadine Baumann
Department of Mathematics
University of Dortmund
44221 Dortmund, Germany

Michael Baur

Faculty of Informatics
University of Karlsruhe
Box D 6980

76128 Karlsruhe, Germany

Marc Benkert

Faculty of Informatics
University of Karlsruhe
Box D 6980

76128 Karlsruhe, Germany

Ulrik Brandes

Computer & Information Science
University of Konstanz

Box D 67

78457 Konstanz, Germany

Michael Brinkmeier
Automation & Computer Science
Technical University of Ilmenau
98684 Ilmenau, Germany

Thomas Erlebach

Department of Computer Science
University of Leicester
University Road

Leicester LE1 7TRH, U.K.

Marco Gaertler

Faculty of Informatics
University of Karlsruhe
Box D 6980

76128 Karlsruhe, Germany

Riko Jacob

Theoretical Computer Science
Swiss Federal Institute

of Technology Ziirich

8092 Ziirich, Switzerland

Frank Kammer

Theoretical Computer Science
Faculty of Informatics
University of Augsburg

86135 Augsburg, Germany

Gunnar W. Klau

Computer Graphics & Algorithms
Vienna University of Technology
1040 Vienna, Austria

Lasse Kliemann
Mathematisches Seminar
Christian-Albrechts-Platz 4
University of Kiel

24118 Kiel, Germany



VIII List of Contributors

Dirk Koschiitzki

IPK Gatersleben
Corrensstrafie 3

06466 Gatersleben, Germany

Sven Kosub

Department of Computer Science
Technische Universitadt Miinchen
Boltzmannstrafle 3

D-85748 Garching, Germany

Katharina A. Lehmann
Wilhelm-Schickard-Institut
fir Informatik

Universitat Tiibingen
Sand 14, C108

72076 Tibingen, Germany

Jirgen Lerner

Computer & Information Science
University of Konstanz

Box D 67

78457 Konstanz, Germany

Marc Nunkesser
Theoretical Computer Science
Swiss Federal Institute

of Technology Ziirich

8092 Ziirich, Switzerland

Leon Peeters

Theoretical Computer Science
Swiss Federal Institute

of Technology Ziirich

8092 Ziirich, Switzerland

Stefan Richter

Theoretical Computer Science
RWTH Aachen

Ahornstrafle 55

52056 aachen, Germany

Daniel Sawitzki
Computer Science 2
University of Dortmund
44221 Dortmund, Germany

Thomas Schank

Faculty of Informatics
University of Karlsruhe
Box D 6980

76128 Karlsruhe, Germany

Sebastian Stiller

Institute of Mathematics
Technische Universitat Berlin
10623 Berlin, Germany

Hanjo Taubig

Department of Computer Science
Technische Universitat Miinchen
Boltzmannstrafie 3

85748 Garching, Germany

Dagmar Tenfelde-Podehl
Department of Mathematics
Technische Universitat
Kaiserslautern

67653 Kaiserslautern, Germany

René Weiskircher

Computer Graphics & Algorithms
Vienna University of Technology
1040 Vienna, Austria

Oliver Zlotowski

Algorithms and Data Structures
Univeristdt Trier

54296 Trier, Germany



Table of Contents

PrefacCe ..o« cocme vme cmnme nmeme sosbs nivedis 55 503 §8 855 §85 sW s 588 MR \Y

List of Contributors ....... ... . .. .. VII

1 Introduction
U. Brandes and T. Erlebach .. ... .. ... ... 1

2 Fundamentals
U. Brandes and T. Erlebach . ........... . .. i .. 7
2.1 Graph Theory . .......c.ioiii e 7
2.2 Essential Problems and Algorithms ......................... 9
2.3 Algebraic Graph Theory......... ... ... . . ... 13
2.4 Probability and Random Walks ................ ... ... .. ... 14
2.5 Chapter NOtes ... ...ttt e 15

Part I Elements

3 Centrality Indices
D. Koschiitzki, K. A. Lehmann, L. Peeters, S. Richter, D. Tenfelde-
Podehl, and O. ZIotowski. . . ... 16
3.1 Introductory Examples ...... ... ... . i 17
3.2 A Loose Definition. ............o .. 19
3.3 Distances and Neighborhoods .............................. 19
3:d. Shortest PAtHS sise voems smsmeasems qmame s wasme ims aesne i 5 28
3.5 Derived Edge Centralities ...............coiiiiiniiiininan.. 34
3.6 Vitaliby . ... 36
3.7 Current Flow ... ... .. 40
3.8 Random Processes........... ..ot 43
3.9 Feedback ... 46
3.10 Dealing with Insufficient Connectivity ....................... 56
3.11 Graph- vs. Vertex-Level Indices ............................ 59

3.12 Chapter Notes



X

Table of Contents

Algorithms for Centrality Indices
R. Jacob, D. Koschiitzki, K. A. Lehmann, L. Peeters, and D. Tenfelde-

Podehl. . . ... 62
4.1 Basic Algorithms . ....... . .. 63
4.2 Centrality-Specific Algorithms .............. ... .. ... ... ... 67
4.3 Fast Approximation ...........c..ceeiuiiniiiiineiniiinn.e. 72
4.4 Dynamic Computation ... ceisini i sicsiivivsivssssnsss 80

Advanced Centrality Concepts
D. Koschiitzki, K.A. Lehmann, D. Tenfelde-Podehl, and O. Zlotowski 83

B INOFANZALION c wu v wsvs smempsosmsawime smsmysms g0 ewssms yeses 84
5:2 Personalzafion : : ;v iusssmsesioms smsmas s 69595 saim 550 saess 87
5.3 Four Dimensions of a Centrality Index ...................... 92
5.4 Axiomatization...............i.iiiii i e 96
5.5 Stability and Sensitivity ... ... ... 104

Part II Groups

6

Local Density

9 FOOSUD s ooz v msn e oW B R P BE FES R R E Y ME ENEEF IR ER ARG EE 112
6.1 Perfectly Dense Groups: Cliques. ......... ... 114
6.2 Structurally Dense Groups............ooouueiiieiunieinnon.. 126
6.3 Statistically Dense Groups. ...........oouiiiiiiinennnon... 131
6.4 Chapter Notes ... ..ot 140
Connectivity

F. Kammer and H. Taubig . .c.0.cciminm0simmnmssns smenpamisnss 143
7.1 Fundamental Theorems ...................iiitiiinnnoun.. 144
7.2 Introduction to Minimum Cuts......... ... ... . ... 147
7.3 All-Pairs Minimum Cuts ................iuiiuiinannen. .. 148
7.4 Properties of Minimum Cuts in Undirected Graphs ........... 149
7.5 Cactus Representation of All Minimum Cuts................. 157
7.6 Flow-Based Connectivity Algorithms........................ 158
7.7 Non-flow-based Algorithms .............. ... ... ... ....... 165
7.8 Basic Algorithms for Components .......................... 169
7.9 Chapter Notes .........oiiiii i 176
Clustering

M. Gaertler .. ... 178
8.1 Quality Measurements for Clusterings ....................... 180
8.2 Clustering Methods . .......... ... .. ... ... 196
8.3 Other Approaches ........... ... ... 209

8.4 Chapter Notes



10

Table of Contents XI

Role Assignments

o LEYIVET w5 vwsws swaas exss 6903 65 Ha b nims GHFR5 SWs S EMEME 953 216
9.1 Structural Equivalence ........ .. ... ... . . i 218
9.2 Regular Equivalence ......... ... ... ... . . i 223
9.3 Other Equivalences ............ciiniiiiiiiiiniiinnan.. 238
9.4 Graphs with Multiple Relations ........... ... .. .. ... ...... 244
9.5 The Semigroup of a Graph ............. .. .. i, 246
9.6 Chapter NOtes . ...ttt 251
Blockmodels

M. Nunkesser, D. Sawitzki .. .........ouuininann. 253
10.1 Deterministic Models . ...... ... .. . i 256
10.2 Stochastic Models ........ .. .. i 275
10,3 CHAPLEL NOEES 5 rns smsms o6 smams ssems sas awsmssms susdmsns s o 290

Part III Networks

11

12

13

Network Statistics

M. Brinkmeier and T. Schank ......... ... .. .. i, 293
11.1 Degree Statistics ........ .o 294
11.2 Distance StatiStics ... ..vvvii i 295
11.3 The Number of Shortest Paths ............................. 300
11.4 Distortion and Routing Costs ..., 301
11.5 Clustering Coefficient and Transitivity ...................... 302
11.6 Network Motifs ....... ... . 306
11.7 Types of Network Statistics............. ... oo ... 307
11.8 Chapter Notes ...... .ot 316

Network Comparison
M. Baur and M. Benkert. ... ... ... .. 318

12.1 Graph Isomorphism........ ... ... . i 319
12.2 Graph Similarity ........... 332
12.3 Chapter NOteSs . ..ot e 340
Network Models .

N. Baumann and S. Stiller .. ...... .. ... 341
13.1 Fundamental Models............. ... ... .. . ... 342
13.2 Global Structure Analysis ..............coiiiiiiinai... 350
13.3 Further Models of Network Evolution ....................... 364
13.4 Internet Topology ............ciiiiiiiiiiii .. 368

13.5 Chapter Notes . ... 372



XII

Table of Contents

14 Spectral Analysis
A. Baltz and L. Kliemanm. . .. ...t 373
14.1 Fundamental Properties ... ........ ...t .. 373
14.2 Numerical Methods . . ....... ... i 385
14.3 Subgraphs and Operations on Graphs....................... 388
14.4 Bounds on Global Statistics. ............coiitiiiiinn ... 393
14.5 Heuristics for Graph Identification .......................... 406
14.6 Chapter Notes ............o it 415

15 Robustness and Resilience
G.W. Klau and R. Weiskircher ..............oiiiiiiiiiennan.. 417
15.1 Worst-Case Connectivity Statistics ......................... 417
15.2 Worst-Case Distance Statistics ....................ovion... 422
15.3 Average Robustness Statistics................ .. ... 424
15.4 Probabilistic Robustness Statistics . ......................... 432
15.5 Chapter Notes .. ... e 435

Bibliography . ... ... . 439



1 Introduction

Ulrik Brandes and Thomas Erlebach

Many readers will find the title of this book misleading — at least, at first sight.
This is because ‘network’ is a heavily overloaded term used to denote relational
data in so vast a number of applications that it is far from surprising that
‘network analysis’ means different things to different people.

To name but a few examples, ‘network analysis’ is carried out in areas such
as project planning, complex systems, electrical circuits, social networks, trans-
portation systems, communication networks, epidemiology, bioinformatics, hy-
pertext systems, text analysis, bibliometrics, organization theory, genealogical
research and event analysis.

Most, of these application areas, however, rely on a formal basis that is fairly
coherent. While many approaches have been developed in isolation, quite a few
have been re-invented several times or proven useful in other contexts as well.
It therefore seems adequate to treat network analysis as a field of its own. From
a computer science point of view, it might well be subsumed under ‘applied
graph theory,’ since structural and algorithmic aspects of abstract graphs are the
prevalent methodological determinants in many applications, no matter which
type of networks are being modeled.

There is an especially long tradition of network analysis in the social sci-
ences [228], but a dramatically increased visibility of the field is owed to recent
interest of physicists, who discovered the usefulness of methods developed in
statistical mechanics for the analysis of large-scale networks [15]. However, there
seem to be some fundamental differences in how to approach the topic. For
computer scientists and mathematicians a statement like, e.g., the following is
somewhat problematic.

“Also, we follow the hierarchy of values in Western science: an experi-
ment and empirical data are more valuable than an estimate; an esti-
mate is more valuable than an approximate calculation; an approximate
calculation is more valuable than a rigorous result.” [165, Preface]

Since the focus of this book is on structure theory and methods, the content is
organized by level of analysis rather than, e.g., domain of application or formal
concept used. If at all, applications are mentioned only for motivation or to
explain the origins of a particular method. The following three examples stand
in for the wide range of applications and at the same time serve to illustrate
what is meant by level of analysis.

U. Brandes and T. Erlebach (Eds.): Network Analysis, LNCS 3418, pp. 1-6, 2005.
© Springer-Verlag Berlin Heidelberg 2005



2 U. Brandes and T. Erlebach

Element-Level Analysis (Google’s PageRank)

Standard Web search engines index large numbers of documents from the Web
in order to answer keyword queries by returning documents that appear relevant
to the query. Aside from scaling issues due to the incredible, yet still growing
size of the Web, the large number of hits (documents containing the required
combination of keywords) generated by typical queries poses a serious problem.
When results are returned, they are therefore ordered by their relevance with
respect to the query.

The success of a search engine is thus crucially dependent on its definition of
relevance. Contemporary search engines use a weighted combination of several
criteria. Besides straightforward components such as the number, position, and
markup of keyword occurrences, their distance and order in the text, or the
creation date of the document, a structural measure of relevance employed by
market leader Google turned out to be most successful.

Consider the graph consisting of a vertex for each indexed document, and a
directed edge from a vertex to another vertex, if the corresponding document
contains a hyperlink to the other one. This graph is called the Web graph and
represents the link structure of documents on the Web. Since a link corresponds
to a referral from one document to another, it embodies the idea that the second
document contains relevant information. It is thus reasonable to assume that a
document that is often referred to is a relevant document, and even more so,
if the referring documents are relevant themselves. Technically, this (structural)
relevance of a document is expressed by a positive real number, and the par-
ticular definition used by Google [101] is called the PageRank of the document.
Figure 1.1 shows the PageRank of documents in a network of some 5,000 Web
pages and 15,000 links. Section 3.9.3 contains are more detailed description of
PageRank and some close relatives.

Note that the PageRank of a document is completely determined by the
structure of (the indexed part of) the Web graph and independent of any query. It
is thus an example of a structural vertex index, i.e. an assignment of real numbers
to vertices of a graph that is not influenced by anything but the adjacency
relation.

Similar valuations of vertices and also of edges of a graph have been proposed
in many application domains, and “Which is the most important element?” or,
more specifically, “How important is this element?” is the fundamental question
in element-level analysis. It is typically addressed using concepts of structural
centrality, but while a plethora of definitions have been proposed, no general,
comprehensive, and accepted theory is available.

This is precisely what made the organization of the first part of the book most
difficult. Together with the authors, the editor’s original division into themes and
topics was revised substantially towards the end of the seminar from which this
book arose. A particular consequence is that subtopics prepared by different par-
ticipants may now be spread throughout the three chapters. This naturally led
to a larger number of authors for each chapter, though potentially with heavily
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Fig. 1.1. PageRank in a network of some 5,000 Web pages containing the keyword
‘java’ (documents with higher value are further to the right; from [93])

skewed workload. To counterbalance this effect, leading authors are identified in
such chapters.

Chapter 3 provides an overview of centrality measures for network elements.
The authors have organized the material from a conceptual point of view, which
is very different from how it is covered in the literature. Algorithms are rarely
discussed in the application-oriented literature, but of central interest in com-
puter science. The underdeveloped field of algorithmic approaches to centrality
is therefore reviewed in Chapter 4. Advanced issues related to centrality are
treated in Chapter 5. It is remarkable that some of the original contributions
contained in this chapter have been developed independently by established re-
searchers [85].

Group-Level Analysis (Political Ties)

Doreian and Albert [161] is an illustrative example of network analysis on the
level of groups. The network in question is made up of influential local politicians
and their strong political ties. This is by definition a difficult network to measure,
because personal variations in perception and political incentives may affect the
outcome of direct questioning. Therefore, not the politicians themselves, but staff
members of the local daily newspaper who regularly report on political affairs
were asked to provide the data shown in Figure 1.2.

Black nodes represent politicians who are members of the city council and
had to vote on the proposed construction of a new jail. The County Executive,
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County 5hdilor

Former
Council Member

Fig. 1.2. Strong political ties between prominent politicians of a county; the two
apparent groups predict the voting pattern of City Council members (black nodes) on
a crucial issue (data from [161])

who was in favor of building the new jail, and the County Auditor were in
strong personal opposition, so that the latter publicly opposed the construction.
While the diagram indicates that the former Council President is structurally
most important (closeness to the center reflects a vertex index called closeness
centrality), it is the group structure which is of interest here.

The voting pattern on the jail issue is predicted precisely by the membership
to one of two apparent groups of strong internal bonds. Members of the group
containing the County Executive voted for the new jail, and those of the group
containing the County Auditor voted against. Note that the entire network is
very homogeneous with respect to gender, race, and political affiliation, so that
these variables are of no influence.

Note also that two council members in the upper right have ties to exactly
the same other actors. Similar patterns of relationships suggest that actors have
similar (structural) ‘roles’ in the network. In fact, the network could roughly
be reduced to two internally tied parties that are linked by the former Council
President.

Methods for defining and finding groups are treated extensively in the second
part of the book. Generally speaking, there are two major perspectives on what
constitutes a group in a network, namely strong or similar linkages.

In the first three chapters on group-level analysis, a group is identified by
strong linkages among its members. These may be based on relatively heavy
induced subgraphs (Chapters 6) or relatively high connectivity between each
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Arnold Schwarzenegger

Terminator I

Stan Laurel
Earl Boen

Babes in Toyland To Be or Not To Be

Henry Brandon

Fig. 1.3. Actors appearing jointly (proving that the co-starring distance of S. Laurel
and A. Schwarzenegger is no larger than 3)

pair of members (Chapter 7). Methods for splitting a network into groups based
on strong linkage are then reviewed in Chapter 8.

Chapters 9 and 10 focus on groups defined by the pattern of relations that
members have. While such groups need not be connected at all, strong internal
combined with weak external linkage can be seen as a special case.

Network-Level Analysis (Oracle of Bacon)

Empirical networks representing diverse relations such as linkages among Web
pages, gene regulation in primitive organisms, sexual contacts among Swedes, or
the power grid of the western United States appear to have, maybe surprisingly,
some statistical properties in common.

A very popular example of a network that evolves over time is the movie
actor collaboration graph feeding the Oracle of Bacon at Virginia.! From all
movies stored in the Internet Movie Database? it is determined which pairs of
actors co-appeared in which movie. The ‘Oracle’ can be queried to determine
(an upper bound on) the co-starring distance of an actor from Kevin Bacon, or
in a variant game between any two actors. Except for fun and anecdotal pur-
poses (exemplified in Figure 1.3), actual links between actors are not of primary
interest. The fascinating characteristics of this data are on the aggregate level. It
turns out, for instance, that Kevin Bacon is on average only three movies apart
from any of the more than half a million actors in the database, and that there
are more than a thousand actors who have the same property.

Many more properties of this data can be studied. A particularly pertinent
observation is, for instance, that in many empirical networks the distribution
of at least some statistic obeys a power-law. But the network could also be
compared to other empirical networks from related domains (like science collab-
oration) or fabricated networks for which a suitable model would be required.

! www.oracleofbacon. org
2 www.imdb.com
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The focus of network-level analysis in general is on properties of networks as a
whole. These may reflect, e.g., typical or atypical traits relative to an application
domain or similarities occuring in networks of entirely different origin.

Network statistics, reviewed in Chapter 11, are a first indicator of network
similarity, often employed in complex systems analysis. In Chapter 12, more
rigorous methods for detailed structure comparison of equally (or at least com-
paratively) sized networks are discussed. A different line of research is the at-
tempt to understand the governing principles of network formation. Chapter 13
is therefore devoted to models for networks with certain properties. A particu-
larly powerful approach to global network analysis is the utilization of spectral
properties of matrices defined describing the network. These are described in
detail in Chapter 14. The final chapter of this book is devoted to the important
question of how sensitive a network is to the loss of some of its elements.

Despite the wealth of material covered, the scope of this book is necessarily
limited. No matter which personal background, the reader will easily identify
gems from the repertoire of network analysis that have been consciously omitted
or woefully overlooked. We nevertheless hope that the book will serve as a useful
introduction and handy reference for everyone interested in the methods that
drive network analysis.



2 Fundamentals

Ulrik Brandes and Thomas Erlebach

In this chapter we discuss basic terminology and notation for graphs, some fun-
damental algorithms, and a few other mathematical preliminaries.

We denote the set of integers by Z, the set of real numbers by R, the set of
complex numbers by C, and the set of rationals by Q. For a set X of numbers,
X denotes the subset of positive numbers in X, and Xgr the subset of non-
negative numbers. The set of positive integers is denoted by IN = Z* and the
set of non-negative integers by Ny = Zg’ .

We use R™*™ to denote the set of all real-valued matrices with n rows and m
columns. If the entries of the matrix can be complex numbers, we write C™*™.
The n-dimensional identity matrix is denoted by I,,. The n-dimensional vector
with all entries equal to 1 (equal to 0) is denoted by 1, (by 0y).

For two functions f : N — IN and g : N — IN, we say that f is in O(g)
if there are positive constants nop € IN and ¢ € R such that f(n) < c- g(n)
holds for all n > ng. Furthermore, we say that f is in £2(g) if g is in O(f). This
notation is useful to estimate the asymptotic growth of functions. In particular,
running-times of algorithms are usually specified using this notation.

2.1 Graph Theory

We take the term network to refer to the informal concept describing an object
composed of elements and interactions or connections between these elements.
For example, the Internet is a network composed of nodes (routers, hosts) and
connections between these nodes (e.g. fiber cables). The natural means to model
networks mathematically is provided by the notion of graphs.

A graph G = (V,E) is an abstract object formed by a set V of wvertices
(nodes) and a set F of edges (links) that join (connect) pairs of vertices. The
vertex set and edge set of a graph G are denoted by V(G) and E(G), respectively.
The cardinality of V' is usually denoted by n, the cardinality of E by m. The two
vertices joined by an edge are called its endvertices. If two vertices are joined by
an edge, they are adjacent and we call them neighbors. Graphs can be undirected
or directed. In undirected graphs, the order of the endvertices of an edge is
immaterial. An undirected edge joining vertices u,v € V is denoted by {u,v}. In
directed graphs, each directed edge (arc) has an origin (tail) and a destination
(head). An edge with origin u € V and destination v € V is represented by an
ordered pair (u,v). As a shorthand notation, an edge {u,v} or (u,v) can also be

U. Brandes and T. Erlebach (Eds.): Network Analysis, LNCS 3418, pp. 715, 2005.
© Springer-Verlag Berlin Heidelberg 2005



