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ABSTRACT

Gas-1iquid equilibria have been determined in simulation of coal liquefaction
process conditions in mixtures of 1ight gases + heavy hydrocarbons (polynuclear
aromatics, N, S, and 0 containing aromatics, some paraffins, and naphthenes),
The mixture systems experimentally investigated are:

32 binary mixture systems of a 1ight gas (hydrogen, methane, or
carbon dioxide) + a heavy hydrocarbon

2 ternary mixture systems of hydrogen + two heavy hydrocarbons

2 ternary mixture systems of hydrogen + methane + a heavy
hydrocarbon

5 complex mixture systems of hydrogen + a coal oil fraction

4 complex mixture systems of methane + a coal oil fraction

Equilibrium data were determined at pressures up to 250 atm and temperatures up

to 460°C which is substantially above the upper Timit of previously reported
investigations in the literature of about 220°C. A flow apparatus of special
design made possible the attainment of the elevated temperatures at high pressures.

Vapor pressures were determined for eight hydrocarbons at superatmospheric
pressures using the same flow apparatus.

A solubility parameter based correlation has been developed for the solubility

. of hydrogen. The hydrogen, methane, and carbon dioxide data have been analyzed
and correlated with various degrees of success with the Soave equation of state,
and Boublik-Alder-Chen-Kreglewski equation of state.
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PROJECT DESCRIPTION

During the five years of research conducted on this project (RP367-2), extensive
vapor-liquid equilibrium (VLE) data have been obtained on binary and ternary systems
of light gases (Hp, CHgs COp) in coal liquids and on pure liquid components which
comprise coal liquids. Thirteen pure hydrocarbons have been used during this period
to simulate coal liquids; these are:
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Specific data obtained include:

. Gas-1liquid equilibria (including solubilities) of simple binary
hydrogen mixtures, simple binary methane mixtures, and simple
binary carbon dioxide mixtures

° Solubilities of hydrogen and methane in two Exxon Donor Solvent
(EDS) coal liquids and three SRC-II (solvent-refined coal) coal
liquids

° Gas-1iquid equilibria of ternary mixtures of hydrogen in two pure
hydrocarbon liquids

) Gas-1liquid equilibria of ternary mixtures of two Tight gases
(Hp + CHg) in a pure hydrocarbon liquid

° Vapor pressures of pure hydrocarbon liquids at superatmospheric
pressures

The experimental conditions under which the data were taken simulate those found in
liquefaction reactors and in the reactor effluent treatment section of a liquefac-
tion plant. Pressures extend to 250 atmospheres (atm) and temperatures to 460°C.

The experimental data were used to test their applicability to coal liquefaction
processes of existing correlations such as the Chao-Seader and the Grayson-Streed.
These correlations have been used extensively in the petrochemical industry.

Extensive correlation of the VLE data obtained in this project has been done to
generate various forms that are best suited for different purposes and needs.

PROJECT OBJECTIVE

VLE data for light gases in coal liquids are needed for the reliable and accurate
design of coal liquefaction plants. For various operating conditions of temperature
and pressure, it is necessary to know when and where multiphases are expected to
coexist in the liquefaction plant. The quantity and distribution of the phases will
be highly dependent on the chemical constituents present at any given operating
condition. Having this information is vital, not only for accurate sizing of
equipment, vessels, and piping, but also for determining the dynamic response of the

plant. This VLE information is also needed for further processing or refining of
the coal liquids.

The collection and correlation of coal-related VLE data was undertaken to meet a
major industry need. Prior to this project, the design of coal conversion processes
was based on petroleum data and correlations which were rarely representative.
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Thus, the objective of this project was to successfully collect and correlate data
which were representative of coal liquefaction processes.

PROJECT RESULTS

A solubility apparatus of the flow type was designed and built under this project,
and it has since been used extensively in the collection of coal-related solubility
and vapor pressure data. The apparatus is a considerable improvement over previ-
ously available equipment in the high temperatures (460°C) and pressures (300 atm)
it can achieve, and the short residence time it offers (which in turn means consid-
erably less component degradation). The apparatus gives consistently reliable

results. The equilibrium apparatus is also able to accommodate systems with mixed
gases.

Extensive data have been collected for the experimental determination of VLE in
diverse mixtures of light gases and heavy hydrocarbons (including coal 1iquids).
These data have substantially extended the state-of-the-art knowledge of phase
equilibria of high-pressure mixture at significantly higher temperatures. These
data form a basic design tool for coal liquefaction plants.

Accurate new correlations of the data have been developed in three ways to generate
results in various forms.

The Boublik-Alder-Chen-Kreglewski (BACK) equation of state has been used to
correlate phase equilibria data of hydrogen mixtures, methane mixtures, and carbon
dioxide mixtures. A1l data found in the literature and the data from this project

were included. This equation is exceedingly accurate in representing pure fluid
properties.

The Soave equation of state has also been used for the correlation of gas solubility
data. The Soave equation offers the great advantage of convenience and economy
while achieving reasonable accuracy. Using the Soave equation, the correlation of
hydrogen mixtures, methane mixtures, and carbon dioxide mixtures has been completed.

For this correlation, a slightly larger data base was used than for the BACK
equation.

Correlation of gas solubility data has been accomplished also with solubility
parameters. This correlation is quite accurate for all systems, and, of all the
correlations, gives the best accuracy for hydrogen. The disadvantage is that the

correlation applies only to the 1iquid phase and only to the dissolved gases in the
liquid.



To provide the needed liquid density data for the correlation of solubilities, a new
density apparatus was designed and constructed.

This project is continuing with extensive work on the determination of:
° Equilibrium flash vaporization of coal liquids

® Equilibrium flash vaporization of coal liquids in the presence of
high-pressure hydrogen gas

° Solubilities of gases in coal liquids
and the correlation of:
° Vaporization properties of coal liquids

° Hydrogen solubility in coal liquids

Linda F. Atherton, Project Manager
Advanced Power Systems Division
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Section 1

INTRODUCTION

Accurate prediction of gas-liquid equilibrium is required for the engineering
design of coal liquefaction plants. It is necessary to know in order to build

a plant the phase states of the various fluid streams in the plant - if they are
gases, liquids, or both, and in the latter case to know the proportions of the
phases, and the distribution of components among the phases. A1l these predic-
tions must be made for diverse conditions of temperatures and pressures, some of
which may be extremely severe. And the components can be highly unusual.

The objective of the present research is to develop this predictive capability,
for it is upon this capability that the design of plant equipment must ultimately
depend for the sizing of the vessels, piping, compressors, separators, and gas-
liquid absorbers and fractionators.

To develop this predictive capability we have carried out a program of research
as follows:

We have performed experimental determination of gas-liquid
equilibrium in diverse mixtures of light gases + heavy hydro-
carbons (including coal liquids) in simulation of coal liquefac-
tion process conditions at pressures up to 250 atm and temperatures
up to 460°C. The experimental apparatus and procedures are
described in Section 2, and the results in Section 3.

We have developed correlations for the solubilities of hydrogen
based on the use of solubility parameters, and have additionally
analyzed and correlated the hydrogen, methane, and carbon dioxide
data with the Soave equation of state, and the Boublik-Alder-Chen-

Kreglewski equation of state. The correlations are described in
Sections 4 and 5.






Section 2

EXPERIMENTAL APPARATUS AND PROCEDURE

2.1 INTRODUCTION

A flow apparatus has been built for the determination of gas-liquid equilibrium

at temperatures from the ambient to 460°C and pressures from ambient to 300 atm.
The apparatus has been checked out to give consistently reliable results and phase
equilibrium data have been obtained for:

. 12 binary mixture systems of hydrogen + a heavy hydrocarbon

. 11 binary mixture systems of methane + a heavy hydrocarbon

. 9 binary mixture systems of carbon dioxide + a heavy hydrocarbon

. 2 ternary mixture systems of hydrogen + two heavy hydrocarbons

. 2 ternary mixture systems of hydrogen + methane + a heavy
hydrocarbon

. 5 complex mixture systems of hydrogen + a coal 0il fraction

. 4 complex mixture systems of methane + a coal oil fraction

For each binary system data have been taken,to the extent permitted by the
nature of the system, at the fixed grid points of four temperatures and seven
pressures as follows:

. temperatures at 190, 270, 350, and 430°C

. pressures at 20, 30, 50, 100, 150, and 250 atm.

The use of the same T-p grid facilitates interpolation and extrapolation with
respect to solvent properties in the development of correlations.

For ternary systems of hydrogen + methane + a heavy hydrocarbon, the proportion

of hydrogen to methane in the feed gas is systematically varied to reveal the
effect of gas composition on K-values.
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For ternary systems of hydrogen + two heavy hydrocarbons, the proportion of the
hydrocarbons in the liquid feed is approximately equi-molal to reveal the liquid
mixing effects.

For complex mixtures of a 1ight gas + a coal o0il, bubble point conditions and the
solubility of the gas in the liquid are determined while vaporization of the o0il is

suppressed to insure the identity of the equilibrium Tiquids with that of the
feed oil.

2.2 APPARATUS

A flow-type design was adopted for the equilibrium apparatus in order to reduce
residence time of the sample in the high temperature zone and thereby to minimize
thermal decomposition. Figure 1 shows the scheme of the apparatus. All parts
exposed to high temperature and high pressure are made of stainless steel type 316.

Starting with thé.feeds to the apparatus as shown in Figure 2 the gases (hydrogen,
methane, and/or carbon dioxide) are supplied from high pressure cylinders through
pressure regulators. A Matheson gas blender (Dyna-Blender model SP-1601) provides
a mixed binary gas stream at a set composition from two individual cylinders.
Composition of the mixed gas has been found to stay constant within + 0.5 mole %.

The blender is bypassed when a single gas 1is used.

Downstream from the blender two vessels of about 1 liter each are placed in series
in front of the compressor in order to promote mixing and to reduce pressure
fluctuations at the blender due to operation of the diaphragm compressor.

A Hofer diaphragm compressor rated at 0.1 M3/hr compresses the gas from 25-150 atm

to a pressure of up to 500 atm. The compressor is bypassed when pure carbon
dioxide gas is used.

Downstream from the compressor is a 500 ml pressure vessel equipped with a pressure
regulator at the exit. The presence of this vessel greatly reduces fluctuations
of pressure caused by the compressor.

The 1iquid feed flows from the feed tank to a Hills-McCanna U-type metering pump

(maximum capacity 5,450 m1/hr, maximum pressure 350 atm) at rates of 500-3000 ml/hr.
The HiTlls-McCanna pump is of the reciprocating type causing uneven flow. To reduce
flow fluctuations, a cylindrical vessel of 75 m1 is installed in a vertical position
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