B

£

-

= A e easa %\rg-\("s e

b —

2 ses T T

¥ %
s
-
h

7 P
! a
4
b
. bt
b1 G i
¥ =i & =K TB/BATRA L OTP
> ! = daCaidss endan Uau'eguaj

oo o v - =

Wl g OO oA

& Jlit e i

froeade ool walisaws
-

3 7 NeaATan Acs
b = =
cer o WL TaaiTa

== e e
3 19 s g Via =

: Y0 ¥ Ve G Ly i
B %
o —m = e i
] i = = AT ¥
s PR
o Liod e o = (=4
LI LISy Cornm A mnm %
=mCe' 0 eimieVivew voa
.o o = <
A ED A~ A
-t 2 Lods o AVen yuév;uun £
v — = -
@i = ermtAmeA e 2 Aea =
= o
‘3 - =
4 N e
5 4
et [
i ¢
¥ -
ar

napn
gu@
AVES

mﬂnp

ApLELE
Wy

Implementing Mathematics
with
the Nuprl Proof Development System

R.L.
S.F.
H.M.
W.R.
J.E.
R.W.
D.J.
T.B.
N.P.
P.
JT.
S.F.

Computer Science Departmer_ljf

Constable
Allen
Bromley
Cleaveland
Cremer
Harper
Howe
Knoblock
Mendler
Panangaden
Sasaki
Smith

-

Cornell University
Ithaca, NY

Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging-in-Publication Data

Implernenting mathematics with the Nuprl proof develop-
ment system

Bibliography: p.

Includes index.

1. Automatic theorem proving. 2. Nuprl (Computer
system) 3. Mathematics—Data processing. [. Constable,
R. L. (Robert L.) II. Cornell University. Dept. of
Computer Science.

QAT76.9.A96147 1986 513 86-8197
ISBN 0-13-451832-2

Editorial/production supervision: LISA SCHULZ
Interior design: THE PRL GRrRoOuP

Cover design: EDSAL ENTERPRISES
Manufacturing buyer: GORDON OSBOURNE

This research supported in part by the National Science Foundation under
grant DCR 83—-03327.

©1986 by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-451832-2 025

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro
Whitehall Books Limited, Wellington, New Zealand

Preface

We hope to accomplish four things by writing this book. Our first goal
is to offer a tutorial on the new mathematical ideas which underlie our
research. In doing so we have tried to provide several entry points into the
material, even at the cost of considerable redundancy. We hope that many
of the ideas will be accessible to a well-trained undergraduate with a good
background in mathematics and computer science. Second, parts of this
book should serve as a manual for users of the Nuprl system (pronounced
“new pearl”). As the system has grown so has the demand, both here at
Cornell and at other institutions, for better documentation. We have tried
to collect here all material relevant to the operation of the system. Third,
we give an overview of our project for those interested in applications of
the results and for those inclined to basic research in the area. Finally,
we present new research which has arisen as we have worked on the Nuprl
system. This system embodies contributions to the foundations of computer
science and semantics, to automated reasoning and to system design, and it
has shown promise as an intelligent system.

Authoring this book was a collective task; many individual efforts found
their ways into these pages. Most chapters have several authors. That we
were able to proceed in this fashion owes to the fact that we have assembled
at Cornell a unique group of computer scientists who had worked for more
than two years on the project.

We would like to acknowledge warmly the special contributions of Joseph
L. Bates to this enterprise. Joe has been a chief architect of this system
and was a major force in creating the PRL project, from which the sys-
tem emerged. This manuscript is replete with Joe’s ideas. We also want
to thank Evan Steeg, who joined the project as an undergraduate and has
since contributed significantly to our efforts, especially in the area of writ-
ing tactics. Tim Griffin’s implementation of the rules for recursive types
and partial functions is greatly appreciated as is his contribution of a new
interface to the evaluator. All of our efforts are built on the contributions
of Fran Corrado, our only full-time programmer. We also thank Christoph
Kreitz, who has used the system extensively and provided us with insightful
reports on its strengths and weaknesses. We also appreciate the construc-
tive criticism of James Hook, who spent many hours reading and discussing
early drafts. We thank Ryan Stansifer, Hal Perkins, and Aleta Ricciardi
for proof-reading. Finally, we thank Donette Isenbarger, Michele Fish and
Dawn Hall for their conscientious assistance in preparing the manuscript.

We appreciate the help we have received from the National Science Foun-
dation through a series of grants supporting the Nuprl project, the Cor-

ix

nell Computer Science Department computing facility, and various pieces of
equipment needed for this research (MCS80-03349, MCS81-04018, DCR&0-
03327, DCR81-05763, and DRC84-06052). The NSF has also supported
Mr. Cleaveland and Mr. Smith with fellowships. We also appreciate the
generous support of IBM, whose fellowships have supported Mr. Mendler.
Finally, we acknowledge the support of Cornell University and especially our
department for providing fellowships, matching funds, and the environment
to make this work possible.

This is the first version of the book. We consider it to be a prelim-
inary effort and welcome timely comments that will help us improve the
presentation. The book describes version 1.0 of Nuprl.

Robert L. Constable
for the PRL Group
Ithaca, NY

Contents

1

Preface ix

Part I: Tutorial

Overview 1
1.1 Brief Description of Nuprl 1
12 Highlightsof Nuprl : : : & s s s smm s w6 66 8 568 85 ¢33 1
1.3 Motivations 3
1.4 The Nuprl Logical Language 4
1.5 Components of the Nuprl System 6
156: Programining Modes: - « « o o w50 o % 55 ¢ « 5 58 5 55 5 5 s 3 8
1.7 Physical Characteristics 8
1.8 The “Feel” of the System 9
1.9 This Document 9
1.10 Research Topics 11
1.11 Related Work 14
Introduction to Type Theory 17
2.1 The Typed Lambda Calculus 17
2.2 Extending the Typed Lambda Calculus 22
2.3 Equality and Propositions as Types. 28
2.4 Setsand Quotients 31
2.5 SEMANRICS : 5 5 5 o6 o 5 5 o 566 4 5 & 8 8 & 53 5 8 s B8 E 33
2.6 Relationship to Set Theory 37
2.7 Relationship to Programming Languages 38
Statements and Definitions in Nuprl 41
3.1 Overview of the Nuprl Environment 41
32 Libraries . « « s s v s 6 v @ £ ¢ 8 8 ¥ 5 5 5 5 5 2 & 6w uE @ 45
33 TheText BAOT .« o 555 ¢ 5 2 5 5 5 85 ¢ 5 ¢ 8 s oo 5 mas 49
3.4 SyntacticIssues oo 51
3.5 Stating Theorems 52
3.6 Defining Logics oo 55
3.7 Elementary Number Theory 60

3.8 Set Theory 62

39 Algebra 64
4 Proofs 67
4.1 Structure of Proofs 67
4.2 Commands Needed for Proofs 68
4.3 Examples from Introductory Logic 76
4.4 Example from Elementary Number Theory 86
5 Computation 95
5.1 Term Extraction 95
5.2 Evaluation. 97
5.3 Computational Content 101
54 AnExample. 101
6 Proof Tactics 107
6.1 Refinement TActiCs « « « « s « = ¢ 5 s & v o s a5 8 6 55 & 6 & 108
6.2 Transformation Tactics 109
6.3 Writing Simple Tactics 109

Part II: Reference

7 System Description 114
7.1 The Command Language 114
7:2 Thelidbrary = s = ¢ s « ¢ ¢« s 5 3 2 5 s s s s mmaam s 6 118
7.3 Window Management 119
7.4 The Text Editor 121
7.5 The Proof Editor 125
7.6 Definitions and Definition Objects 129

8 The Rules 132
Bil Semanbics & « 5w 5 6 5 ¢ 85 53 5 8 BanEnEGE S e DS 132
8.2 The Type System in Detail 143
83 TheRules 149

9 The Metalanguage 183
9.1 An Overviewof ML 183
92 Tacticsin MIs v « ¢« o s ¢ ¢ 5 5 5 3 s vp o s smens s g6 189
9.3 Basic Types in ML for Nuprl 192
9.4 Tools for Tactic Writers 196
9.5 Example Tactics, 198
9.6 Existing Tactics 203

vi

Part III: Advanced

10 Building Theories

101 ProofS: : . s 5 o sisio o o m @ maw 6.0 6 6 5 6 § 3 s 5 8 5 @
10:2 Definitionsi: « « o o 5 5 6 % % 6 9 5 & 5 o 5 6 8 s 5 2 & & 3 3
10.3 Sets and Quotients
10.4 Theories e

11 Mathematics Libraries

11.1 Basic IDEfnitions « - www = 2 ¢ ¢ 5 v 5 5 6 3 3 wwwmw s
11:2' Lists and AYTAYS « « w o o o « s o 5 3 ¢ + 3 & & @ 5 9w w
11.3. Cardinality . . o w v o s s 5 5 5 65 55 85 66w a6 E
114 RegularSets.
11.5 Real Analysis
11.6 Denotational Semantics

12 Recursive Definition

12,1 Inductive Types. o s = « s + s ¢ s s e sG55 6 & 55 85
12.2 Partial Function Types

Appendix A: Summary of ML Extensions for Nuprl
Appendix B: Converting to Nuprl from Lambda-prl
Appendix C: Direct Computation Rules
Bibliography

Index

vii

206
206
208
210
214

216
216
217
221
228
235
238

242
242
246

251
256
262
264

293

Chapter 1

Overview

1.1 Brief Description of Nuprl

Problem solving is a significant part of science and mathematics and is the
most intellectually significant part of programming. Solving a problem in-
volves understanding the problem, analyzing it, exploring possible solutions,
writing notes about intermediate results, reading about relevant methods,
checking results, and eventually assembling a solution. Nuprl is a com-
puter system which provides assistance with this activity. It supports the
interactive creation of proofs, formulas, and terms in a formal theory of
mathematics; with it one can express concepts associated with definitions,
theorems, theories, books and libraries. Moreover, the theory is sensitive
to the computational meaning of terms, assertions and proofs, and the sys-
tem can carry out the actions used to define that computational meaning.
Thus Nuprl includes a programming language, but in a broader sense it is
a system for implementing mathematics.

1.2 Highlights of Nuprl

One of the salient features of Nuprl is that the logic and the system take ac-
count of the computational meaning of assertions and proofs. For instance,
given a constructive existence proof the system can use the computational
information in the proof to build a representation of the object which demon-
strates the truth of the assertion. Such proofs can thus be used to provide
data for further computation or display. Moreover, a proof that for any
object z of type A we can build an object y of type B satistying relation
R(z,y) implicitly defines a computable function f from A to B. The system
can build f from the proof, and it can evaluate f on inputs of type A. For
example, given any mapping f of a nonempty set A onto a finite set B of

2 CHAPTER 1. OVERVIEW

smaller but nonzero cardinality, one can say that there will be two points
of A mapped to the same point of B. From a proof of this statement the
system can extract a function which given specific A, B and f produces two
points of A mapped to the same point of B. This function expresses the
computational content of the theorem and can be evaluated.

As a computer system Nuprl supports an interactive environment for
text editing, proof generation and function evaluation. The interaction is
oriented around a computer terminal with a screen and a mouse, for our
intention is to provide a medium for doing mathematics different from that
provided by paper and blackboard. Eventually such a medium may support
a variety of input devices and may provide communication with other users
and systems; the essential point, however, is that this new medium is active,
whereas paper, for example, is not. This enables the interactive style of
proof checking that characterizes Nuprl; in this system it is impossible to
develop an incorrect proof.

Nuprl also possesses some of the characteristics of an intelligent computer
system in that it provides its users with a facility for writing proof-generating
programs in a metalanguage, ML. The implementation of the logic codes
into Nuprl certain primitive mathematical knowledge in the form of rules
for generating proofs and in the form of certain defined types in ML. As
people use Nuprl they create libraries of mathematical facts, definitions and
theorems; they can also create libraries of ML programs which use these
results and other ML programs to generate proofs of theorems. In a very
real sense, as Nuprl is used its capacity for providing help in proving theorems
increases. By virtue of this property, Nuprl possesses aspects of an intelligent
system.

The system design exhibits several key characteristics. The style of the
logic is based on the stepwise refinement paradigm for problem solving in
that the system encourages the user to work backward from goals to sub-
goals until one reaches what is known. Indeed, the system derives its name,
Proof Refinement Logic,! from this method of presentation. The logic has a
constructive semantics in that the meaning of propositions is given by rules
of use and in terms of computation. We discuss these features in more detail
later.

In a larger sense the Nuprl system serves as a tool for experimenting
with ways of applying computer power to solving problems and to generat-
ing exact explanations of solutions, especially in the realm of computational
mathematics. Because the difficult part of computer programming is pre-
cisely in problem solving and in explaining algorithmic solutions, we think
that a system of this kind will eventually have a lasting impact on our ability
to produce reliable and understandable programs.

INuprl is version “nu” of our Proof Refinement Logics. Earlier versions were “micro”
and “lambda” [Nuprl Staff 83].

1.3. MOTIVATIONS 3

1.3 Motivations

In high school algebra solutions to most problems can be checked by simple
computation; for instance, one can easily verify by substitution and reduc-
tion that 17 is a root of 23 — 1622 — 192 + 34. Those who are pleased with
the certainty of such solutions may also hope to find ways of checking solu-

tions to more abstract problems (such as showing that \/iﬂ is irrational)
computationally. The idea that computers can check proofs is a step toward
achieving this ambition [McCarthy 62,deBruijn 80], and there are several in-
teresting implementations of this idea [Suppes 81, Weyhrauch 80,Constable,
Johnson, & Eichenlaub 82,Gordon, Milner, & Wadsworth 79]. The computer
system described here represents another approach to this problem.

Someone who has struggled for hours or perhaps days to untangle the
details of a complex mathematical argument will understand the dream of
building a computer system which helps fill in the details and keeps track of
the proof obligations that must be met at the critical points of an argument.
There are computer systems which do this, and it is possible in principle
to solve problems in a system of this kind which are beyond the patience
and capability of an unaided human being, as K. Mulmuley has already
demonstrated in LCF [Mulmuley 84]. Nuprl uses some of the mechanisms of
LCF which make this possible, namely the metalanguage ML in which the
user writes programs to provide help with the details.

People who have spent hours or days getting a mathematical construc-
tion such as Gauss’ construction of a regular 17-gon exactly right will know
the desire to watch this mathematical construction “come to life.” Nuprl
was built to meet such aspirations. Every construction described in Nuprl’s
mathematics can, in principle, be executed mechanically. In particular,
Nuprl can execute functions and thus serve as a programming language in
the usual sense.

Anyone who has tried to write a mathematical paper or system consist-
ing of several interacting theorems and constructions will appreciate having
a uniform notation for discourse and a facility for creating an encyclopedia
of results in this notation. The Bourbaki effort [Bourbaki 68] manifests such
aspirations on a grand scale, and Nuprl is a step toward realizing this goal. It
supports a particular mathematical theory, constructive type theory, whose
primitive concepts can serve as building blocks for nearly any mathematical
concept. Thus Nuprl provides a uniform language for expressing mathe-
matics. This is a characteristic that distinguishes Nuprl from most other
proof-checking or theorem-generating systems.

Anyone who has written a heuristic procedure such as one for playing
games or finding proofs and who has seen it do more than was expected
will understand the dream of using a computer system which can provide
unexpected help in proving theorems. It is easy to extrapolate to dreams of
machines offering critical help in solving real problems. Substantial effort has

4 CHAPTER 1. OVERVIEW

been put into “theorem-proving” programs which attempt to provide just
such help, usually in a specific domain of mathematics. While Nuprl is not
a theorem—proving program in the usual sense, it is a tool for exploring this
kind of heuristic programming. Users may express a variety of procedures
which search for proofs or attempt to fill in details of a proof. The system has
already provided interesting experiences of unexpected behavior by finishing
proofs “on its own.”

People who have experienced the new electronic medium created by com-
puters may imagine how mathematics will be conducted in it. We see elec-
tronic mail and electronic text editing. We see systems like the Cornell
Program Synthesizer [Teitelbaum & Reps 81] that help users specify objects
such as programs directly in terms of their structure, leaving the system to
generate the textual description. We can imagine these ideas being applied
to the creation of mathematical objects such as functions and proofs and
their textual descriptions. In this case, because mathematical structure can
be extremely complex, one can imagine the computer providing consider-
able assistance in producing objects as well as help in displaying the text
and giving the reader access to the underlying structure in various ways.
Nuprl offers such capabilities, the most striking among which are the help
the system provides in writing formal text (see chapter 3) and in reading
and generating highly structured objects such as proofs and function terms.
As with all aspects of Nuprl there is much to be done to achieve the goals
that motivated the design, but in every case the system as it stands makes
a contribution. We hope it will show the way to building better systems of
this kind.

1.4 The Nuprl Logical Language

An algorithm to add two integers can be expressed in Nuprl as \z.\y.z +
y. In general, if b(z) is an expression such as z *x 2 or \y.z + y in the
variable z, then \z.b(z) is the function of one argument which on input a
computes the value b(a), where b(a) stands for the expression b with each
occurrence of r replaced by a. Application of the function is expressed by
(\z.b(z))(a) = b(a); for example, (\z.z * 2)(2) = 2+ 2 = 4. We speak
of \z.b(z) as the abstraction of b(z) with respect to z. This notation is
essentially the same as Church’s lambda notation, which is systematized in
the lambda calculus [Church 51]. The form \z.b(z) is a visual approximation
to Az.b(z) of the lambda calculus. Our notation is also very close to that
used in ML [Gordon, Milner, & Wadsworth 79] except that type information
about the variable can be included in the ML form. This marks a significant
departure from the Algol-like languages as well, for in these languages the
type information is given with the parameters of a function. For example,
one would write function(z:int)int in the heading of an Algol function

1.4. THE Nuprl LOGICAL LANGUAGE

wa

definition to show that the function maps integers to integers.

In Nuprl, as in the work of H.B. Curry [Curry, Feys, & Craig 58,Curry,
Hindley, & Seldin 72], a type discipline is imposed on algorithms to describe
their properties. Thus, when we say that \z.z + 1 is a function from integers
to integers, we are saying that when an integer n is supplied as an argument
to this algorithm, then n + 1 will denote a specific integer value. In general,
meaning is given to a function term \z.b(z) by saying that it has type A — B
for some type A called the domain and some type B called the range. The
type A — B denotes functions which on input a from A produce a value in B.
The fact that the functions always return a value is sometimes emphasized
by calling them total functions.

The type structure hierarchy of Nuprl resembles that of Principia Math-
ematica, the ancestor of all type theories. The hierarchy manifests itself
in an unbounded cumulative hierarchy of universes, U, U, ..., where by
cumulative hierarchy we mean that U; is in U;4; and that every element of
U, is also an element of U;y;. Universes are themselves types,? and every
type occurs in a universe. In fact, A is a type if and only if it belongs to a
universe. Conversely all the elements of a universe are types.

It is pedagogically helpful to think of the other Nuprl types in five stages
of decreasing familiarity. The most familiar types and type constructors are
similar to those found in typed programming languages such as Algol 68, ML
or Pascal. These include the atomic types int, atom and void along with
the three basic constructors: cartesian product, disjoint union and function
space.® If A and B are types, then so is their cartesian product, A#B, their
disjoint union, A| B, and the functions from A to B, A->B.

The second stage of understanding includes the dependent function and
dependent product constructors, which are written as z: A->B and z: A#B,
respectively, in Nuprl. The dependent function space is used in AUTOMATH
and the dependent product was suggested by logicians studying the corre-
spondence between propositions and types; see Scott [Scott 70] and Howard
[Howard 80]. These types will be explained in detail later, but the intuitive
idea is simple. In a dependent function space represented by z:A->B, the
range type, B, is indexed by the domain type, A. This is exactly like the
indexed product of a family of sets in set theory, which is usually written as
(Ilz € A)B(z) (see [Bourbaki 68]). In the dependent product represented
by z: A#B, the type of the second member of a pair can depend on the value
of the first. This is exactly the indexed disjoint sum of set theory, which is
usually written as (Xz € A)B(z) (see [Bourbaki 68]).

2The concept of a universe in this role, to organize the hierarchy of types, is suggested in
[Artin, Grothendieck, & Verdier 72] and was used by Martin-Lof [Martin-Lof 73]. This
is a means of achieving a predicative type structure as opposed to an impredicative one
as in Girard [Girard 71] or Reynolds [Reynolds 83].

3In the discussion which follows we will use typewriter font to signify actual Nuprl text
and mathematical font for metavariables.

6 CHAPTER 1. OVERVIEW

The third stage of understanding includes the quotient and set types
introduced in [Constable 85]. The set type is written {z:A|B} and allows
Nuprl to express the notions of constructive set and of partial function. The
quotient type allows Nuprl to capture the idea of equivalence class used
extensively in algebra to build new objects.

The fourth stage includes propositions considered as types. The atomic
types of this form are written @ = b in A and express the proposition that
a is equal to b in type A. A special case of this is ¢ = a in A, written
also as a in A. These types embody the propositions-as—types principle
discovered by H. B. Curry [Curry, Feys, & Craig 58], W. Howard [Howard
80], N. G. deBruijn [deBruijn 80] and H. Lauchli [Lauchli 70] and used in
AUTOMATH [deBruijn 80,Jutting 79]. This principle is also central to P.
Martin-L6f’s Intuitionistic type theories [Martin-Lof 82,Martin-Lof 73].

The fifth stage includes the recursive types and the type of partial func-
tions as presented by Constable and N. P. Mendler [Constable & Mendler
85]. These are discussed in chapter 12, but they have not been completely
implemented so we do not use them in examples taken directly from the com-
puter screen. These are the only concepts in this book not taken directly
from the 1984 version of the system.

The logical language is interesting on its own. It is built around tested
logical notions from H. Curry, A. Church, N. deBruijn, B. Russell, D. Scott,
E. Bishop, P. Martin-Lof and ourselves among others and as such forms part
of a well-known and thoroughly studied tradition in logic and philosophy.
However, this tradition has not until now entered the realm of usable for-
mal systems and automated reasoning in the same way as the first-order
predicate calculus. Thus the design and construction of this logic is a ma-
jor part of Nuprl, and becoming familiar with it will be a major step for
our readers. We recommend in addition to this account the forthcoming
book of B. Nordstrom, K. Petersson and J. Smith, the paper “Constructive
Validity” [Scott 70], the paper “Constructive Mathematics and Computer
Programming” [Martin-Lof 82] and “Constructive Mathematics as a Pro-
gramming Logic” [Constable 85]. An extensive guide to the literature ap-
pears in the references. We hope that this account will be sufficient to allow
readers to use the system, which in the end may be its own best tutor.

1.5 Components of the Nuprl System

General

The Nuprl system has six major components: a window manager, a text
editor, a proof editor, a library module, a command module and a func-
tion evaluator. Interaction with Nuprl takes place in the context of three
languages—the command language, which is extremely simple, the object

1.5. COMPONENTS OF THE Nuprl SYSTEM 7

language, which is the mathematical language of the system, and the meta-
language, which is a programming language with data types referring to the
object language. The command language is used to initiate editing, use the
library and initiate executions in the object and metalanguages, to name a
few of its functions. The object language is a constructive theory of types.
The metalanguage is the programming language ML from the Edinburgh
LCF system modified to suit Nuprl.

The window manager provides the interface for the interactive creation
of certain kinds of linguistic objects called definitions, theorems, proofs and
libraries on a terminal screen. Windows offer views of objects; using these
views the user can navigate through the object, stopping to modify it, to copy
parts of it to other windows or to insert parts into it from other windows,
etc. Three special windows provide for editing theorems, viewing the library
and entering commands.

Definitions

The definition facility allows one to develop new notations in the form of
templates which can be invoked when entering text. This feature provides a
flexible way to introduce new notation. For instance, we might have defined
a function, abs (x), which computes the absolute value of a number, but we
might like to display it in the text as |x|. This can be accomplished by
defining a template. The format is |<x:number>| == abs(<x>), where the
left—hand side of == is the template and the right-hand side is the value (the
angle brackets are used to designate the parameter).

Proof Editing

The proof-editing facility supports top—down construction of proofs. Goals
are written as sequents; they have the form z;:Hy,...,zn:H, >> G, where
the H; are the hypotheses and G is the conclusion. To prove a goal, the user
selects a rule for making progress toward achieving this goal, and the system
responds with a list of subgoals. For example, if the goal is prove A&B and
the rule selected is “and introduction,” the system generates the following
subgoals.

1. prove A
2. prove B

Proofs can be thought of as finite trees, where each node corresponds to
the application of a logical rule. A proof can be read to the desired level of
detail by descending into subtrees whose structure is interesting and passing
over others.

8 CHAPTER 1. OVERVIEW

Evaluation

The evaluation mechanism allows us to regard Nuprl as a functional pro-
gramming language. For example, the multiplication function in Nuprl
notation is \x.\y. (x*y), and one can evaluate (\x.\y. (x*y)) (2)(3) to
obtain the value 6. Of course, one can define much more complex data
such as infinite precision real numbers and functions on them such as mul-
tiplication (see section 11.6). In this case we might also evaluate the form
(\x.\y.mult(x,y)) (e) (pi) (50), which might print the first 50 digits of
the infinite precision multiplication of the transcendental numbers e and .

The evaluation mechanism can also use a special form, term_of (), where
t is a theorem. The term_of operation extracts the constructive meaning of
a theorem. Thus if we have proved a theorem named ¢ of the form for all =
of type A there is a y of type B such that R(z,y) then term_of () extracts a
function mapping any a in A to a pair consisting of an element from B, say
b, and a proof, say p, of R(a,b). By selecting the first element of this pair
we can build a function f from A to B such that R(z, f(z)) for all z in A.
The system also provides a mechanism for naming and storing executable
terms in the library.

1.6 Programming Modes

The term_of operation enables two new modes of programming in Nuprl in
addition to the conventional mode of writing function terms. To program in
the first new mode one writes proof outlines, p, which contain the computa-
tional information necessary for term_of (p) to be executable. The second
mode is a refinement of the first in which complete proofs, cp, are supplied
as arguments to term_of. In this case one knows that the program meets
its specification, so this mode might be called “verified programming”.

1.7 Physical Characteristics

The system described here is written in about 60,000 lines of Lisp. It runs in
Zetalisp on Symbolics Lisp Machines and in Franz Lisp under Unix 4.2BSD.
There are also several thousand lines of ML programs included in the basic
system. We have been using it since June 1984 principally to test the ideas
behind its design but also to begin accumulating a small library of formal
algorithmic mathematics. It can be used as a programming environment,
and to a limited extent it has seen such service. But unlike its simpler
predecessor, Lambda-prl [Nuprl Staff 83|, it has not been provided with a
compiler nor an optimizer, so it can be very inefficient. We hope that in due
course there will be facilities to make it run acceptably fast. The system is
in fact growing, but the major thrust over the next year is to substantially

1.8. THE “FEEL” OF THE SYSTEM 9

enhance its deductive power and its user-generated knowledge in the form
of libraries of definitions, theorems and proof methods (see section 1.9 for
some of our detailed plans).

1.8 The “Feel” of the System

Nuprl is an example of an entity which is more than the sum of its parts. It
is more than a proof checker or proof-generating editor. It is more than an
evaluator for a rich class of functional expressions and more than a system for
writing heuristic procedures to find proofs in a specific foundational theory.
The integration of these parts creates a new kind of system. One can sense
new possibilities arising from this combination both in the system as it exists
now and in its potential for growth.

We find that Nuprl as it runs today serves not only as a new tool for
writing programs and program specifications but also as a tool for writing
nearly any kind of mathematics. Working in the Nuprl environment results
in a distinctive style of mathematics—a readable yet formal algorithmic style.
The style in turn suggests new mathematical substance such as our treatment
of recursive types and partial functions [Constable & Mendler 85]. Nuprl also
offers a coherent way to organize and teach a collection of concepts that are
important in computer science.

As we extrapolate the course of Nuprl’s development we see the emer-
gence of a new kind of “intelligent” system. The mechanisms for the ac-
cumulation of mathematical knowledge in the form of definitions, theorems
and proof techniques are already in place, and as more of this knowledge
is accumulated the system exhibits a more widely usable brand of formal
mathematics. Furthermore, since the tactic mechanism gives the system ac-
cess to the contents of its libraries, one can envision altering the system so
that it generates and stores information about itself. In this sense Nuprl is
an embryonic intelligent system.

1.9 This Document

Scope

More than just a user’s manual for a specific system, this book serves as
an introduction to a very expressive foundational theory for mathematics
and computer science, a theory which brings together many diverse ideas
in modern computing theory. The book is also an introduction to formal
logic in general and to constructive logic in particular, and it introduces new
methods of program development and verification.

This book also describes a computer system for doing mathematics. The
system provides a medium distinct from the traditional paper and black-

