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PREFACE

It is a fundamental fact of nature that the space we live in is three-
dimensional. Consequently, many branches of applied mathematics
and theoretical physics are concerned with physical quantities defined
in 3-space, as I shall call it; these subjects include Newtonian
mechanics, fluid mechanics, theories of elasticity and plasticity, non-
relativistic quantum mechanics, and many parts of solid state physics.
The Greek geometers made the first systematic investigation of the
properties of ‘ordinary’ 3-space, and their work is known to us mainly
through the books of Euclid; our basic geometrical ideas about the
physical world have their origins in Euclidean geometry. A major
advantage of Euclid’s work was its presentation as a deductive system
derived from a small number of definitions and axioms (or ‘basic
assumptions’); although Euclid’s axioms have turned out to be
inadequate in a number of ways, he nevertheless provided us with
a model of what a proper mathematical system should be [Reference
P.1].

Through the introduction of coordinate systems, Descartes linked
geometry with algebra [Reference P.2]; geometrical structures in
3-space such as lines, planes, circles, ellipses and spheres, were asso-
ciated with algebraic equations involving three Cartesian coordinates
(x, y, z). Then in the nineteenth century, Hamilton [Reference P.3]
and Gibbs [Reference P.4] introduced two similar types of algebraic
objects, ‘quaternions’ and ‘vectors’, which treated the three coor-
dinates simultaneously; the rules of operation of these new sets of
objects were different from those of real or complex numbers, giving
rise to new types of ‘algebra’; a more general algebra of N-dimen-
sional space (N =3,4,5,...) was introduced by Grassmann
[Reference P.5]. Over several decades, the vector concept developed
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in two different ways: in a wide variety of physical applications,
vector notation and techniques became, by the middle of this century,
almost universal; on the other hand, pure mathematicians reduced
vector algebra to an axiomatic system, and introduced wide general-
isations of the concept of a three-dimensional ‘vector space’, not only
to N-dimensional spaces, but also to Hilbert space and other infinite-
dimensional metric spaces, and to topological spaces. These two
developments proceeded largely independently, and many books
dealing with the applications of vectors have approached the fun-
damentals of the subject intuitively rather than axiomatically, assum-
ing some prior knowledge of Euclidean and Cartesian geometry. In
recent decades, however, hard-and-fast distinctions between ‘pure’
and ‘applied” mathematics have been disappearing; in particular, the
concept of an abstract ‘space’, especially Hilbert space, has become
familiar in many applications of mathematics, including quantum
mechanics, numerical analysis and statistics, and in the study of
differential and integral equations. Also, the concept of ‘basic
assumptions’ or ‘structure’, in dealing with number systems, has
taken its place in school mathematics [Reference P.6]; while these
basic assumptions are not presented as a complete logical scheme in
the way that Euclid intended, they nevertheless familiarise students
with the concept of an axiomatic scheme. For these reasons, it seems
appropriate to take account of both pure and applied mathematical
points of view when treating the subject of ‘vectors’, which is now a
fundamental part of both these modes of thought.

This book deals with vector algebra and analysis, and with their
application to three-dimensional geometry and to the analysis of
fields in 3-space. In order to bring out both the ‘pure’ and ‘applied’
aspects of the subject, my main objectives have been:

(i) to base the work on sound algebraic and analytic foundations;

(i) to develop those intuitive relations between algebraic equa-

tions and geometrical concepts which are of fundamental
importance in physical applications;

(iii) to establish standard vector techniques and theorems, giving

numerous examples of their use.
In the first three chapters, the algebra of vectors is developed, based
upon the axioms of vector space algebra; as the axioms are
introduced, their geometrical interpretation is given, so that they can
be understood intuitively. The axiomatic scheme is extended to pro-
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vide a definition of Euclidean space, consisting of ‘points’ and ‘dis-
placements’; this provides an axiomatic basis for Euclidean geometry,
linking it directly with the algebra of linear vector spaces. This
linkage has the reciprocal advantage (not apparent in this book) that
it enables geometrical intuitions to be developed in dealing with more
general types of linear space, in particular with finite-dimensional
spaces and Hilbert space. In the process of interpreting the algebraic
axioms geometrically, algebraic definitions of elementary geometrical
concepts such as ‘length’ and ‘angle’ have to be given and justified;
we also define Cartesian or ‘rectangular’ coordinates and establish
their fundamental properties, such as Pythagoras’ theorem. By this
means, Cartesian geometry and trigonometry, as well as Euclidean
geometry, are seen to arise out of a single set of axioms. The first
three chapters also develop the techniques of vector algebra, and
apply them to problems in geometry, in particular the geometry of
lines and planes.

The fourth chapter deals with transformations of the components
of a vector in two or three dimensions, in particular with trans-
formations representing rotations and reflections. A clear distinction
is made between ‘active transformations’, due to a change of the
vector itself, and ‘passive transformations’, due to change of the
frame of reference. The idea of groups of transformations is
introduced, and the study of rotations in two dimensions is linked
with the intuitively familiar concept of ‘addition of angles’. Trans-
formations in 3-space are represented by 3 X 3 matrices. Although it
has been assumed that the reader has some familiarity with matrices,
the necessary theory of 3 X3 matrices and their determinants has
been developed in the first two sections of Chapter 4, using the
properties of vectors established earlier. This emphasises the fact that
vectors and matrix algebra are simply two different aspects of the
algebra of vector spaces. It is of interest to note that this vectorial
approach to matrix algebra can be made quite general, and is not
restricted to 3 X 3 matrices.

The study of functions f(x), where x is a variable lying in a
continuous range, depends to a great extent upon the differential and
integral calculus. When we study functions defined in 3-space, it is
necessary to develop an extension of calculus appropriate to regions
of this space. There are several difficult problems to solve before this
extended calculus can be defined. First, we have to study how points
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in 3-space are specified by systems of coordinates; second, we have to
give definitions of curves, surfaces and volume regions in 3-space;
third, if we consider a specific surface or volume region, we need to
define the ‘boundary’ of that region. These problems are dealt with in
Chapter 5. Since points in 3-space are described by three coordinates,
this work necessarily involves using analytic properties of functions of
up to three variables, and of their derivatives and integrals. This
raises a problem of presentation: establishing the necessary analytic
properties of functions of one, two and three variables requires a
substantial amount of work, whose incorporation in Chapter 5 would
break the continuity of ideas developed there. Elementary analysis of
functions of one variable is normally dealt with early in university
mathematics courses, and is the subject of a large number of text-
books; so when I use an analytic property of one-variable functions, I
simply quote a reference in one of the most readable elementary
books on the subject, J. C. Burkill’s A First Course in Mathematical
Analysis. The analysis of functions of several variables is appreciably
more complicated, and it is arguable that in an elementary textbook,
we should not trouble about proofs of properties of partial derivatives
and multiple integrals. In a book for students of mathematics,
however, it is unsatisfactory to omit explanations simply because they
are complicated. I have met this difficulty by establishing the essential
properties of functions of two variables in Appendix A, to which
reference is made when these properties are used in the main text;
the necessary properties of functions of rhree variables are simple
generalisations of those of two variables, and when they are used, I
again refer to the analogous property of two-variable functions. A
reader can therefore either accept the analytic properties assumed in
the main text, or refer to Appendix A for a justification of these
assumptions. By omitting this analytic detail from Chapter 5, it is
possible to give a fairly detailed account of surfaces, volume regions,
and especially of curves.

Scalars and vectors whose value depends upon their position in
space are called scalar and vector ‘fields’, provided that they satisfy
suitable analytic conditions. Since these fields in general depend upon
three coordinates, variations in a field throughout 3-space depend
upon the derivatives of the field with respect to three coordinates;
certain combinations of derivatives, ‘divergence’, ‘gradient’ and
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‘curl’, known as vector operators, are closely associated with physical
concepts such as flux and vorticity. In the final chapter, these opera-
tors are defined and studied, and their physical significance is
emphasised. As in Chapter 5, it is necessary to be careful over
analytic details; the vector operators are defined in a mathematically
sound way, but in the discussion of their physical significance, I have
thought it best to omit some analytic details. One theorem (Stokes’
theorem) is difficult to prove in full generality: its significance is
brought out by proving it under special conditions in the main text;
the general proof is given in Appendix B. The discussion of physical
examples leads naturally to the introduction of the ‘Laplacian’
operator; this completes the definition and discussion of the principal
differential operators used in a variety of branches of mathematical
physics, and provides a natural point at which to end.

The first three chapters of this book arose out of a course of
lectures given to first-year mathematics students at the University of
Kent. Although the book is written primarily for students of mathe-
matics in the early part of their University course, those interested in
the more mathematical aspects of physics and engineering may prefer
this treatment of vectors based on linear space algebra, since linear
spaces have a rapidly widening relevance in these disciplines. A
number of my former students have chosen to follow this approach in
sixth-form mathematics teaching, and those studying advanced
school mathematics may find that the first four chapters of the book
provide a coherent picture of a number of sixth-form topics which are
often treated separately.

While writing this book, I have had many helpful discussions with
other members of staff of the School of Mathematics in the University
of Kent. I am particularly indebted to Dr R. Hughes Jones for many
exchanges of ideas, not only while the book was being written, but
also when I was formulating the approach to Chapters 1-3. I am very
grateful to Mrs Sandra Bateman and Miss Diane Mayes for their
careful preparation of the manuscript, and for their patience in
coping with a long series of additions and amendments. The Cam-
bridge University Press have been most helpful and thorough in
checking and tidying up the manuscript; I wish to thank them for
their help, and also Miss Ruth Farwell for checking the examples and
problems. I have been pleased to have the student’s-eye comments of
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my daughter Carol, and I very much appreciate the interest that my
whole family have shown in the book, despite the nuisance value of
books and papers strewn all over the house.

Roy Chisholm

Mathematical Institute
University of Kent
February 1977
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1

Linear spaces and displacements

1.1 Introduction

Our understanding of the physical world depends to a great extent on
making more or less exact measurements of a variety of physical
quantities. All single measurements on a physical system consist of
observing a single real number, and very often this single real number
is, by itself, the value of an important physical quantity; examples are
the measurement of a mass, a length, an interval of time, an electrical
potential, the frequency or wavelength of an electromagnetic wave, a
quantity of electrical charge, and the electric current in a wire.
Physical quantities of this kind are called scalar quantities, or, more
frequently, scalars. We shall make a distinction between these two
expressions: ‘scalar’ will be used as a mathematical expression;
scalars, for our purposes, are real algebraic variables A, u, . . ., which
can, in general, take values in the whole range (—c0, ©); they possess
other properties which will be defined in Chapter 4, but for the
present we shall regard them simply as real numbers. The expression
‘scalar quantity’ will refer to any specific physically measurable
quantity, such as a mass or a charge, which is found experimentally to
have the mathematical properties of a scalar. One important property
of scalar quantities is that they are intrinsic properties of a physical
system, and do not change if the whole physical system is translated
to a different position in three-dimensional space, or is rotated in
space. For example, if a metallic conductor is at a certain potential in
an electric field produced by certain electric charges, this potential is
unchanged if the conductor and the charges are translated or rotated
as a whole, their relative positions remaining unchanged. Similarly,
the mass of a body is independent of the position and orientation of
the body in three-dimensional space.
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Not all measured quantities are best understood as a single
number. A change in position in three-dimensional space from a
point P to a point Q, known as a displacement, depends upon a
number (the distance from P to Q), but also depends upon the
direction from P to Q. There are various ways of defining a dis-
placement; the most familiar is to define a set of Cartesian axes, with
the origin at P, as in Fig. 1.1. Then the displacement PQ is defined by
giving the projections (x, y, z) of the line PQ on the three axes. Other
examples of physical quantities with which we intuitively associate
both a real number (the magnitude) and a direction in space are force,
velocity, the electric, magnetic or gravitational field at a point in
space, and the direction normal (that is, perpendicular) to a given
plane in space. Physical quantities of this type are known as vector
quantities; the corresponding abstract mathematical entities, whose
properties we now start to define, are called vectors.

We shall define vectors by assuming that they obey certain basic
algebraic equations, the axioms of vector algebra. From these axioms
we shall be able to deduce the usual geometric properties of dis-
placements in three-dimensional space; for example, we can show
that the lengths PQ, x, y and z in Fig. 1.1 obey the Pythagorean
relation

PQ*=x*+y?+22 (1.1)
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The algebraic axioms are not necessarily associated with any
geometrical interpretation; however, the interpretation of vectors as
displacements is such a natural and familiar one that we inevitably
think in geometrical terms when we discuss vectors; moreover, the
geometric picture is a great aid to our intuition about vector quan-
tities. So, on the one hand, we shall derive vector algebra from
axioms written in algebraic form, and shall eventually deduce three-
dimensional Euclidean geometry from these axioms; on the other
hand, we shall, from the beginning, interpret the axioms and other
equations intuitively in terms of three-dimensional geometry, with
the vectors represented by displacements.

We denote vectors by symbols such as a, b, r, n and u. A set of
vectors satisfying certain conditions is denoted by {a}, for example.
Geometrically, a vector a is represented by a ‘directed line’ in space,
as in Fig. 1.2. With any vector a we associate a unique non-negative

Fig. 1.2

real number q, called the modulus or magnitude of the vector. We
frequently say that a is the ‘length’ of the vector; in saying this, we are
using the geometrical interpretation of a vector as a spatial dis-
placement. Although we do not give a definition of modulus or length
a until Chapter 2, we shall use the concept in talking about the
geometrical interpretation of vectors.

1.2 Scalar multiplication of vectors

A vector a can be multiplied by any real number A to give another
vector Aa. If A >0 and if a represents a displacement, Aa is a dis-
placement in the same direction as a, but with magnitude Aa; so la
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is simply a itself. The displacement 3a is indicated in Fig. 1.2. We
have drawn the displacements representing 3a and a in different
positions. As we shall discuss fully in §1.4, a displacement has a
definite ‘initial point’ in space, and the displacement is ‘from’ this
point; because displacements have a definite position in space, they
are often referred to as ‘fixed vectors’. The abstract vectors a and 3a,
however, have no initial points in space—it is, in fact, rather
misleading to represent them by directed lines in a diagram. In order
to remind ourselves that vectors are not associated with points in
space, we represent them (as in Fig. 1.2) by directed lines at arbi-
trarily chosen points; abstract vectors are for this reason sometimes
called ‘free vectors’.

Multiplication of a vector a by —1 gives a vector denoted by —a;
this vector is represented by a displacement of the same length as a,
and in exactly the opposite direction, as indicated in Fig. 1.2. When
A <0, the vector Aa is again represented by a displacement in the
opposite direction to a; its length is [Ala, where |A| is the absolute
value of A. For example, a displacement representing the vector —2a
is as shown in Fig. 1.2; note that the arrows on —a and —2a are in the
opposite sense to those on a and 3a.

The formal axioms governing multiplication by finite real scalars A
and u are:

(1A) Ifaisa vector, and A any real number, then Aa is a vector,
(1B) la=a, (1.2)
(10) A(na)=(Au)a.

The Axiom (1B) tells us that multiplication by unity does not change a
vector a. Since A = uA on the right of Axiom (1C), we can extend
the axiom to give

A(ua)=p(ra)= (uA)a. (1.3)
So Axiom (1C) tells us that the order of multiplication by two scalars
(A and w) does not matter, since the result is equivalent to multi-
plication by Au. In formal language, (1.3) tells us that scalar multi-
plication of vectors is associative and commutative. If A #0 and
w=A"",(1.2) and (1.3) give

A7'(Aa)=1la=a.

This means that a is a scalar multiple of all vectors Aa (A #0).
Geometrically, displacements corresponding to a and Aa are said to
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be ‘parallel’; this is explained more fully in §1.4. Although we have
referred to the modulus of a vector in discussion, we note that this has
not been defined by the Axioms (1A)-(1C).

When A =0, the Axiom (1A) implies the existence of a vector Oa.
A displacement corresponding to Oa is of zero length, and so is no
displacement at all; so for all vectors a we write

0a=0 (1.4)

defining the zero vector 0. The essential point of equation (1.4) is that
0 is the same vector, whatever a is. We formalize this into the axiom:

(1D) There is a unique vector 0, called the zero vector, which
satisfies

for all vectors a.

The uniqueness of the zero vector is an important property of
three-dimensional space, and is also a property of many more
complicated ‘spaces’ occurring in mathematics and mathematical
physics. Equation (1.4) is ‘intuitively obvious’, but this is only because
of our everyday experience of displacements; in formulating an ab-
stract mathematical theory of vectors, the obvious needs to be stated
explicitly.

1.3 Addition and subtraction of vectors

The second set of axioms for vectors {a} define the laws of addition of
vectors. They embody many familiar properties of displacements in
space, and after stating the axioms, we shall discuss their geometric
meaning. The operation of addition is denoted by the symbol ‘+’. It
may appear confusing to use the same symbol for addition of
numbers (scalars) and for addition of vectors; there are two reasons
why confusion does not arise:
(i) the sum of two scalars A +u contains scalars (A and w ), while
the sum of two vectors a+b contains vectors (a and b);
(ii) the axioms of addition and scalar multiplication of vectors are
very similar to axioms of addition and multiplication of scalars.
The axioms of vector addition are:

2A) a+b is a vector, for any two vectors a, b,

(2B) a+b=b+a, (1.5)
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(2C) a+(b+c)=(a+b)+c, (1.6)
(2D) (A+u)a=2ra+pua, 1.7)
(2E) A(@a+b)=Aa+Ab. (1.8)

The addition of a and b to give the vector sum a+b is represented
in Fig. 1.3. The two vectors are represented by displacements PQ and
PS from the point P. The point R is chosen so that PORS is a
parallelogram; then PR represents the vector sum a+b. Geometric-
ally, this rule of combination, known as the parallelogram law, is
obviously symmetrical between a and b; this symmetry is built in to
vector algebra in Axiom (2B); algebraically, this axiom is known as
the commutative law of addition of vectors. It has been already
pointed out that representing vectors by displacements can be
misleading; this shows up in Fig. 1.3, where it is more natural to think

/
> 7
P = Q

Fig. 1.3

of combining displacements PQ and QR to give the displacement PR.
We shall see in §1.4, however, that this is not an accurate way of
representing vector addition. A closer physical analogy to vector
addition is the experimental law of combination of two forces acting
at a point P: if they are represented by the vectors a and b, then they
are equivalent to a force represented by a+b, also acting at P; Fig.
1.3'is then interpreted as the ‘parallelogram of forces’.

Axiom (2C) is the associative law of addition of vectors; a+ (b+c)
is the vector formed by first adding b and ¢ to give (b+c¢) and then
adding this to a; this process is represented in Fig. 1.4, with a+ (b+c¢)
represented by PT. Likewise, (a+b)+c is represented by PT in Fig.
1.5. Axiom (2C) has the interpretation that the same displacement
PT is defined by the two processes.



