PROGRAMMING
PRIMER

Robert P Taylor

A Graphic Introduction
to Computer Programming,
. with BASIC and Pascal




PROGRAMMING

A Graphic Introduction to Computer Programming,
with BASIC and Pascal

Robert P. Taylor

Teachers College, Columbia University

VAV

ADDISON-WESLEY
PUBLISHING COMPANY
Reading, Massachusetts
Menlo Park, California
London « Amsterdam

Don Mills, Ontario = Sydney



Library of Congress Cataloging in Publication Data

Taylor, Robert P.
Programming primer.

Includes index.
1. Electronic digital computers—Programming.

L. Title.
QA76.6.T393 001.642 81-2209
ISBN 0-201-07400-1 AACR2

Copyright © 1982 by Addison-Wesley Publishing Company, Inc. Philippines
copyright 1982 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or oth-
erwise, without the prior written permission of the publisher. Printed in the United States of Amer-
ica. Published simultaneously in Canada.

ISBN 0-201-07400-1
ABCDEFGHIJ-AL-898765432



PROGRAMMING



preface

GENERAL COMMENTS

This book is designed to introduce the process of computer programming to
those with no previous knowledge of the subject. The text assumes no math
background beyond the introductory secondary school level. Solved examples
introduce the major facets of programming and focus on how to develop a prob-
lem solution suitable for computerization. A major area of concentration is the
student’s development of an appropriate approach to formulating problem so-
lutions by means of FPL (First Programming Language), a well-structured pro-
gramming language designed specifically for this purpose at Teachers College,
Columbia University. Complete mastery of FPL requires no access to comput-
ers of any sort. Yet because FPL was designed to embody the best of current
thinking on programming by computer professionals, mastery of FPL leads
naturally to the successful use of many well-known computer languages. The
book starts the student on the path to learning two such languages: the text
demonstrates how solutions formulated in FPL may be translated directly and
mechanically into well-structured programs in BASIC and Pascal.

WHO CAN USE THIS BOOK?

This book can be used successfully as a first text in programming at any of a
number of levels. Though originally developed for educators, it is equally suited
for others as well. Those who find the more mathematical approach adopted by




vi

Preface

most other programming texts to be a formidable barrier to getting started in
programming may find this book a welcome alternative. At the same time,
though it does not presuppose a mathematics background nor use much math-
ematics, it is a thorough introduction to the basic logic structures involved in
all programming. It therefore can also serve admirably as an introduction to
structured programming for students in engineering, the hard sciences, and
computing. Because programming is primarily well-organized thought translat-
ed into instructions for a computer, all computing requires the same first
achievement of the novice—learning to conceptualize a problem in a form suit-
able for computer solutions.

All kinds of students have used this material successfully, both as a
class text and as an independent-study guide. Students using it have ranged in
age from 12 to 60, in experience from none to extensive, and in occupation from
housewife to computing professionals. They have come from developing as well
as developed countries around the world.

The material has been used both as a review text and as a “first look”
text. Whenever students are being introduced to computing with minimal help
from instructional staff, this is a reasonable text to start with—whether the
students are working completely on their own or loosely attached to a class.
The text is designed to forestall their learning a lot of bad habits of structuring
when they pursue programming on their own. Attention focuses on the organi-
zation of programming rather than on myriad details of hardware, languages,
monitors, or operating systems. Study of this book profited a number of stu-
dents who already knew considerable programming but who had learned eclec-
tically and lacked a sense of good programming structure.

HOW LONG SHOULD IT TAKE
TO COVER THE MATERIAL IN THIS BOOK?

Though this text should prove equally suitable as an introduction to program-
ming for all beginners regardless of their backgrounds or eventual objectives,
though the principles presented must be mastered by anyone who would learn
to program adequately, the speed with which the beginner can progress will
depend on the particular background and objectives of the learner. Thus the
text may be covered in the initial few weeks of courses designed for engineering
and science students or in a few weeks of independent study by learners with
considerable experience in logic and in organized thinking. Or it may be the
basis for a full term or even a full year’s work for those without much back-
ground in formal problem solving. Testing the material of the book with a wide
range of learners has indicated that the type of previous educational experi-
ence, not educational level, is the best predictor of how fast the material will be
mastered.



Preface

A NOVEL PRIMER

This text is novel in four respects. First, it relies heavily upon graphics to pre-
sent the fundamental ideas of programming. Second, it goes into considerable
detail and is therefore quite long for an introduction or “primer.” Third, it
requires no access to hardware to study and master most of the principal ideas.
Fourth, it embodies a multilingual approach.

The Graphic Presentation of Programming

The reason for using a graphic presentation in FPL is pedagogical. Human ‘

beings use graphic representation constantly, are familiar with symbols of all
kinds, and use them constantly to organize ideas of every sort. Till now, with
the possible exception of von Neumann flowcharting, little use has been made
of graphical approaches to teaching programming. Instead, texts and manuals
have emphasized the use of written character languages exclusively and have
emphasized exactly how these written languages look, in the form computers
find it convenient to display. Everything is thus reduced to sequential listings
of “statements” from the particular language. However, human thinking is sel-
dom actually purely sequential. Human beings often think in terms of hierar-
chies and parallel structures. Therefore the natural organization of thinking is
not solely in the form of a sequential listing of ideas, the form a computer finds
most convenient. FPL as used in this text departs from this traditional ap-
proach to teaching programming and deliberately takes advantage of not being
bound to sequential display. Parallel thoughts are represented side by side.
Alternatives are shown in appostion. Hierarchical thinking is encouraged
immediately.

The rough thinking essential to solving any but the simplest problem.

is encouraged by including a formal representation of rough ideas, the EPI-
SODE, as one of the primary FPL constructs. The graphic approach makes this
inclusion simple and natural, and students are consistently encouraged to rep-
resent rough ideas in successive drafts of each program. Through both the mod-
el program solutions and the exercises, students are thus encouraged to see
problem solving as the processs it is, rather than to think mistakenly that it is
an inspired, instantaneously realized event.

The Length of Detail of This Primer

This primer is long because it assumes that few things are self-evident to the
novice, that the “QED” or “clearly, it follows from here” approach that pro-
duces short texts and that leaves to the imagination much of the detailed logic

vii



viii

Preface

of a program or a problem solution is not a fruitful approach for teaching new
material to the uninitiated. Many explanations are therefore presented in great
detail, with illustrations of intermediate stages. The approach assumes it’s bet-
ter to present explanations long enough to help those who need them than to
omit such detail. If present, the detail can always be skipped over by those who
don’t need it; if omitted, it is not available to those who do need it. The exten-
sive presentation of examples is also based on the idea that learning occurs by
modeling; thus every chapter concludes with a complete program embodying
the major idea of the chapter.

The Hardwareless Aspect of This Approach

The material in this book depends on access to hardware only for the BASIC
and Pascal interpretations—the primary presentation in FPL requires no com-
puter. This approach has been taken for several reasons. Because there is con-
siderable general educational benefit involved in learning how to program and
because computing hardware is not always directly available to many who
might profit from this learning experience, one major motivation for developing
FPL was to develop a sound way to teach programming even in the absence of
access to hardware. At the same time, even where hardware is readily accessi-
ble, there are strong advantages to mastering basic structural concepts before
using that hardware extensively. The overall and most important thing to learn
is not a collection of eccentric details about a given language or piece of com-
puter hardware but how to move from a problem to a well-organized solution
for that problem. Trying to learn how to solve problems by organizing things
while simultaneously trying to learn all the transitory eccentricities of a lan-
guage designed to “fit” a particular piece of hardware is at best pedagogically
questionable. Such simultaneous approaches have often contributed directly to
the unfortunate situation now prevalent in computing generally: great quanti-
ties of programmer time are spent trying to fix up and change programs that
were poorly conceived and badly written in the first place.

The Multilanguage Approach

While some courses using this material have taught only the FPL and ignored
the BASIC and Pascal interpretations altogether, it is more usual to have the
students learn one or both of the other languages along with FPL. Whether the
material on BASIC or Pascal should be introduced gradually, in parallel with
the FPL (as the text presents it), or presented in some more concentrated fash-
ion (e.g., after all FPL has been learned) is a matter of choice for the learner
and the teacher.



Preface

The two sets of interpretations are designed to provide a simple, me-
chanical technique for translating FPL solutions. Neither set is intended to be
a complete text suitable for fully mastering that language; each set is only a
carefully designed springboard into its appropriate use. Teachers can be of im-
mense help in guiding the student into these languages, but the student can
also make the transition alone, provided appropriate reference manuals and
documentation on how to use each particular language in the local environment
are available.

SUMMARY

The major objectives of this book are to teach students how to generate prob-
lem solutions suitable for computerizations, to give them a strong sense that
programs are written to be intelligible to other people, and to convince them
that good program structure is an essential characteristic of any intelligible
program. To achieve these objectives, the programming process is presented in
considerable detail, using FPL, a language specially designed for just this pur-
pose. That language distills the essence of programming into a minimum of
graphically represented components the student can easily remember and me-
chanically translate into other computer languages. The translation languages
included are BASIC and Pascal.

January 1982 R.PT.
New York City

ix



Chapter 1
Fundamentals

Introduction

Episodes

The NEXT

A First Look at Refinement: The Process of Programming
Assignments, Datanames, and Storage

Creating a Complete Program

Testing the Program—Test Data and Trace Tables

Chapter 2
A Closer Look at Data—Declarations

Introduction

The Form in Which Data Is Transmitted

The Form Data Assumes inside the Computer

A Second Look at Getting Data In and Out of the Computer
A Program Illustrating Declarations

QO WN

19
23

30
30
31
45
49

xi



xii

Contents

BASIC Interpretation of Chapter 1
Introduction
Fundamentals in BASIC
Running Your Program on Your Computer
Making the Computer Create the Trace Table
BASIC Interpretation of Chapter 2
Declarations in BASIC

Chapter 3
A Package of Data Items—
The RECORD

Introduction
What Is a RECORD?—A Simple Example
Record Declaration and Use
Reading Records of Data from the Data Stream
More about Data Streams—Files
BASIC Interpretation of Chapter 3
Records and Files in BASIC
Pascal Interpretation of Chapters 1, 2, and 3
Introduction
A Program Illustrating Fundamentals
Further Notes on Datanames, Declarations, and Assignments
Running Your Program on Your Computer
A Second Program Example
Two Final Examples: Creating and Retrieving Records in Files

Chapter 4
Forcing the Computer to Repeat—
The WHILE

Introduction
Repeating Episodes: Two Examples—Searching and Averaging
The WHILE—the FPL Construct for Accomplishing Repetition
Abbreviating the Relation Asserted
BASIC Interpretation of Chapter 4
The WHILE in BASIC
The Complete Searching and Averaging Programs in BASIC
Pascal Interpretation of Chapter 4
The WHILE in Pascal
The Complete Searching and Averaging Programs in Pascal

51
51
51
53
55
57
57

62
62
64
70
72
81
81
85
85
85
89
920
92
93

100
100
103
122
127
127
131
133
133
136



Chapter 5
A Row of Similar Data Items—
The One-dimensional Array

Introduction

Arrays and Subscripted Datanames

Note Reversal—A Musical Program Combining WHILEs and Arrays
BASIC Interpretation of Chapter 5

The Note Reversal Program and One-dimensional Arrays in BASIC
Pascal Interpretation of Chapter 5

The Note Reversal Program and One-dimensional Arrays in Pascal

Chapter 6
Rows of Similar Data Items—
The Multidimensional Array

Introduction

Arrays with Two Subscripts

A Three-dimensional Array

Declaration of Multidimensional Arrays

A Display Program: WHILEs and Two-dimensional Arrays

Completing the Program to Display the Letter T

Increasing Flexibility—Storing the Letter Pattern in a File
BASIC Interpretation of Chapter 6

The Letter-display Program and Two-dimensional Arrays in BASIC
Pascal Interpretation of Chapter 6

The Letter-display Program and Two-dimensional Arrays in Pascal

Chapter 7
Synthesizing—
Creating a Survey Analysis Program

Introduction

Surveying Library Use

Creating a Program to Analyze the Survey Data

Making the Program More Flexible at Reading Responses

Making the Report More Informative about the Data
BASIC Interpretation of Chapter 7

The Survey Analysis Program in BASIC
Pascal Interpretation of Chapter 7

The Survey Analysis Program in Pascal

Contents

140
140
154
167
167
169
169

174
174
181
190
191
196
202
205
205
207
207

212
212
213
224
228
233
233
236
236

xiii



xiv

Contents

Chapter 8
Forcing the Computer to Choose
—The EITHER

Introduction

Three Problems Requiring Choices

The EITHER

The EITHER in the Machine Condition Program

A Specific EITHER for the Age Selection Program

Using the EITHER to Edit and Ensure Data Validity
BASIC Interpretation of Chapter 8

The Age Selection Program and the EITHER in BASIC

The Finer Selection Program and EITHERs inside EITHERs
in BASIC

Pascal Interpretation of Chapter 8
The Age Selection Program and the EITHER in Pascal

The Finer Selection Program and EITHERs inside EITHERs
in Pascal

Chapter 9
Two Embellishments—
Compound Assertions and ENDFILE

Introduction

Combining Assertions

ENDFILE: Programmatically Handling Data Files of Any Size

Handling the Amount of Data Submitted Interactively: Quit Now?
BASIC Interpretation of Chapter 9

Compound Assertions in BASIC

Three ENDFILE Examples in BASIC

Interactive Analog to ENDFILE in BASIC
Pascal Interpretation of Chapter 9

Compound Assertions in Pascal

Three ENDFILE Examples in Pascal

Interactive Analog to ENDFILE in Pascal

Chapter 10
Keeping Programs Easy to Read, Repair, and Modify—
The Program Block

Introduction
Using Outlines to Organize and Simplify: A Simple Example

240
240
247
249
256
266
270
270

273
276
276

279

284
284
293
298
301
301
302
305
308
308
310
314

318
318



Contents xv

Making a Program Easier to Read by Organizing It in Blocks 320
Blocks as an Aid in Program Modification: Two Examples 329
BASIC Interpretation of Chapter 10 359
The Program Block in BASIC 359
The Block-structured Letter-display Program in BASIC 362
The Block-structured Survey Analysis Program in BASIC 364
Pascal Interpretation of Chapter 10 368
The Program Block in Pascal 368
The Block-structured Letter-display Program in Pascal 371
The Block-structured Survey Analysis Program in Pascal 373
Chapter 11

Simplifying Program Creation
—The Parametric Block

Introduction 378
The Name-display Program 378
Approach 380
The Parametric Block 380
The Main Program 391
A Final Note: Reusing the Screen 404
BASIC Interpretation of Chapter 11 407
The Parametric Block in BASIC 407
Creating a BASIC Translation in Easy Stages 410
A Further Stage 413
The Complete Program and Parametric Block 416
Pascal Interpretation of Chapter 11 428
The Parametric Block in Pascal 428
Creating a Pascal Translation in Easy Stages 431
A Further Stage 434
The Complete Program and Parametric Block 437
Chapter 12

Dividing the Labor—
Independent Parametric Blocks

Introduction 450
The Context: Animating the Children’s Name Display 450
Determining a Good Division of Labor 451

The Name-animation System 457



xvi

Contents

Improvements to the System
The Function: A Variation of the Parametric Block
BASIC Interpretation of Chapter 12

The Independent Parametric Block and Name-animation System
in BASIC

The Function in BASIC
Prewritten Functions Provided in BASIC
Pascal Interpretation of Chapter 12

The Independent Parametric Block and Name-animation System
in Pascal

The Function in Pascal
Prewritten Functions Provided in Pascal

Glossary

Index

464
475
482

482
488
491
492

492
498
502

503

515



Fundamentals



2

Fundamentals

INTRODUCTION

Computer programming is the process of instructing computers to carry out
specific tasks. The instructions are called programs and the “language” in
which the set of instructions is cast is called a computer language.

Most computers perform only a limited number of specific electrical
actions. A computer language puts the computer’s electrical activity at the
command of the programmer. The programmer instructs the machine by link-
ing a set of instructions together so that the computer produces the actions
desired by the programmer when it reads the instructions. This means, of
course, that the computer program must be put into a machine-readable form
so that the computer, via one of the external devices attached to it, can read
the program. By feeling or seeing the patterns of holes punched into a series of
computer cards or by sensing the electrical signals generated by keys on a type-
writer-like terminal, the computer can translate a program into electrical ac-
tions. The actual transformation of the instructions into electrical actions is
called running or executing the program.

There are many different languages and many different computers.
Some languages run on many different sizes, makes, and types of computers;
and some run on only one. Some languages are relatively old and include “fos-
sil” components representing computer hardware requirements that no longer
exist; some languages are so new that only a few programmers have yet learned
them. All languages have their eccentricities and none is implementable on all
computers or known to all programmers.

This book is based on FPL or First Programming Language. It is
given this title because it is designed to be used as the first programming lan-
guage taught to a beginner. Although FPL incorporates features common to
various languages, it does not actually run on any computer.

The design of FPL is based on the assumption that a general ap-
proach to programming should be independent of the details of particular lan-
guages. It is better to learn programming without worrying about the inevitable
eccentricities and exceptions of a particular machine and a particular language.
Once this approach has been mastered, the student should have no trouble
moving from FPL to other languages.

The components of FPL will be introduced gradually. In this chapter
we will introduce several, beginning with one component crucial to all program
development. It exemplifies the idea that the creation of any computer pro-
gram is an extended process.



