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Introduction

From the very beginning of civilization man has purposely been influencing
his environment. This influence can be analysed from various viewpoints.

We can consider the philosophical aspects of this influence, characterizing
in various ways the purposefulness of that activity. The scientific aspects
are related to the development of natural and social sciences which make
an intentional influence possible and to that end are, in fact, being
developed. The evaluation of the results achieved by this influence can
lead to various conclusions; mankind is not always able to predict precisely
the results of its activities. Therefore the methodology of a purposeful
activity, of decision making and of analysing the possible misjudgements
has attracted the interest of many researchers in various branches of science.
One of the branches related to those problems is control theory.

Control. A purposeful influence of man or of the technical devices
constructed by him on the environment, and in particular on other technical
devices or processes, is generally called control. The branch of science
related to control problems is often referred to as cybernetics. The most
mathematical part of that science is called, though less commonly, control
theory. The latter has developed its own system of basic concepts and
definitions, but relies on the results of modern mathematics.

The concept of control consists of such detailed concepts as controlled
process, constraints, control goal and control performance. The controlled
process or object is that part of the environment which is influenced by the
control. The use of the word process emphasizes the fact that control and its
outcome should not relate to a given moment and steady state only, and
that we are primarily interested in the dynamic development in a given
time interval of the results of control. Constraints of control reflect the fact
that the process cannot be controlled in an arbitrary way. The goal of
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VIII INTRODUCTION

control is the postulated result of our control action. If that goal is
attainable, then it can usually be reached in many ways. Therefore, it is
useful to specify the performance index of control as the measure of the
quality of control, making it possible to choose between various control
actions leading to the same goal. The choice of the best control action
that ensures the realization of the control goal and minimization or
maximization of the performance index under the given constraints is
called control optimization. The control goal can also be defined indirectly
and the definition results only from control optimization, since an optimal
control process might be a goal in itself.

Mathematical model. The choice of a control action is based on the
available knowledge of the controlled process, its constraints, its goal
and performance index. This knowledge is often not precisely recognized.
It may just be a part of our intuition or experience. However, if control
actions are to be performed automatically by technical devices, without
continuous interventions of man, then it is necessary to specify the available
knowledge in a form which is precise enough to be transferred to technical
devices. More generally, if a decision to be made is sufficiently important,
a detailed analysis of the possible decisions and their outcomes or even
a decision optimization might be desirable. Also in this case it may prove
useful to specify the available and pertinent knowledge in the form of
a mathematical model.

The concept of a model, though often abused in the popular sense, is
in fact fundamental for many sciences, has a basic cognitive and methodo-
logical meaning, and provides a cardinal tool of research. Models can be
divided into cognitive models and purpose-oriented models (though every
cognitive model obviously has its purpose); they can be also classified
into mathematical, physical, etc., models. For control theory and its
applications, mathematical purpose-oriented models are of primary
importance since their form and accuracy can be adapted to the particular
problem of control or decision choice. The methodology of model building
and of analysing various properties and applications of mathematical
models has been developed together with control theory, particularly in
the course of the last four decades. Some recent books—as an example,
the monograph by Kalman, Arbib and Falb [55]—try to summarize this
broad knowledge. However, usually this synthesis is limited to more
abstract properties of mathematical models. The models are then referred
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to, though not very luckily, as systems or dynamic systems, since the word
system has in fact a broader sense.

There are many textbooks and monographs dealing with the fundamental
types of models in control theory or with the properties of models for
given classes of controlled processes. In this book an attempt is made
to present the problems related to mathematical models of control processes
from a different viewpoint. Starting with the analysis of the concept of
a model, special attention is paid to the purpose-oriented form of the
model and the methodology of model-building for a given process, thus
through an analysis of the properties of various classes of mathematical
models and a description of model identification and verification methods
we arrive at a general class of abstract mathematical models. This class
is slightly larger than that investigated in [55], since it contains both
dynamic and static models.

The above problems are discussed in detail in Chapter 1 of the present
book. Here, we shall review some basic notions related to the use of
mathematical models for control problems, since they are necessary to
permit an approach to the problems considered in the later chapters.

A mathematical model of a control problem is, somewhat simplifying,
the sum of the pertinent knowledge related to the controlled process,
constraints, control goal and performance index, expressed in the form
of mathematical relations. There are many tvpes of such models.

A most useful form of a mathematical model is the structural model,
which classifies signals or variables in the process to be controlled and
indicates types of relations between those variables without specifying
the relations precisely. The classification of process variables starts with
the classic division into input variables which express the influence of man
or of the environment on the process, and output variables which express
the influence of the process on the environment. The goal of control is
usually expressed in terms of output variables.

As regards input variables, it is useful to distinguish (Fig. 1.1) control
variables or controls which represent the purposeful influence on the process,
disturbing variables or disturbances which represent various other (usually
random) influences of the environment on the process and make the
achievement of the goal difficult, and parameters or explanatory variables
which can be assumed to be known with a given accuracy—at least in
a given interval of time in which the model is investigated and assumed
to be valid. Similarly, it is useful to classify further the output variables.
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Fig. 1.1 Structural models: (a) simplest one, (b) tandem connection, (c) parallel
connection, (d) feedback connection.

Processes of a veritably dynamic character are distinguished as possessing
some type of memory: the output variables depend not only on the current
values of the input variables, but also on their past course. In most types
of mathematical models it is possible to represent the whole past of the
process by introducing a sufficient number of additional internal or
endogenous variables, called in this case state variablest; some of these
variables can also be interpreted as output variables. More precisely, the
state of a mathematical model of a process (briefly, the state of a process)
is the smallest set of variables whose values determine the future course
of the output variables, if the precise form of the model, its parameters
and the future course of other input variables are known. The necessary
number of state variables, called the process dimension, is usually greater
than the number of output variables that can actually be observed in a real
process (though of course, the state variables can always be treated as
output variables of the process model).

If the analysed process is complicated enough and it is possible to split
it into simpler subprocesses with distinct input and output variables, then

1 If the concept of state is sufficiently extended, it is possible to provide such a represen-

tation of the past for all types of mathematical models. However, the concept of the
state is often used only for those models which have a finite dimension, that is, a finite
number of state variables. As in the theory of stochastic processes, such models are
called Markov-type models.
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a structural model comprising the connections between various subprocesses
contains important information. There are several basic types of inter-
connections between subprocesses; some of them are presented in Fig. I.1.

A necessary supplement to the structural model is the information on
sets of values of model variables. Depending on the kinds of these sets,
we classify the basic types of models. If the sets of values of input and
output variables (including state variables) are countable, we speak of
a model discrete in level or quantified model. If, furthermore, these sets
are finite then we speak of a finite model or a model with a finite number
of statest. The simplest models of this type are just logical relations between
input and output variables. If the sets of values of input and output
variables are uncountable (usually they are compact subsets of real axes),
we speak of a model continuous in level.

Also vital is the information on the set of time instants in which we
analyse the behaviour of the process or its model. If this is a countable
set, then we are dealing with a time discrete model (a difference equation
is then the typical form of the input/output relation). If, however, the set
is uncountable, then we are dealing with a model continuous in time
(a differential equation is then the typical form of input/output relation).

Similarly important for the sake of mathematical exactness of model
formulation are assumptions about function spaces whose elements are
the model variables. For example the control of a time discrete model
may be a bounded sequence, or a square summarizable sequence; the control
of a model continuous in time may be a square-integrable or bounded
or piece-wise constant function.

All the above types of models may be either static or dynamic. In
a static model, the present values of input variables determine the present
values of output variables. In such a model there is no need to introduce
the concept of state; the model is zero-dimensional. In a dynamic model,
the state variables are defined and the model dimension is not zero.

Models which are continuous in level (but not necessarily in time) may
be linear, i.e. described by linear relations{} between input and output

T The finite model should not be confounded with the Markov model. The Markov
model has a finite number of indices of state variables, whereas the finite model has
additionally a finite number of values of state variables. Technical devices represented
by finite models are often called finite automata.

t1 Strictly speaking, for a model to be linear it is sufficient that the dependence between
input, state, and output variables be affine. Addition to the output variable of a component
which is independent of input variables does not change the essence of the model.
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state variables. A linear model is usually the simplest form of a model,
and its first approximation which is valid for minor deviations from the
nominal working conditions.

A complete model of a control problem contains not only the structural
model and a description of its variables but also the exact form of
input/output or input/state/output relations, as well as relations which
define constraints, the control goal and performance index. In order to
obtain a possibly precise model, in the beginning we usually define only
the general form of these relations, which depend on parameters with
unknown values. When testing the actual process experimentally, and
comparing its behaviour with the model, the values of these parameters
may be selected to achieve the possibly best representation of the process
by the model. This method of fitting a model to a process is called process
identification. There are many identification methods, suitable for different
types of models. In some special cases, a model can be ideally fitted to
a single run of a process; but it is impossible to build an ideal model which
will truly reflect the process behaviour in all possible situations. This
results from the fact that a model is just a model and does not cover the
wide scope of phenomena occurring in the process and in the surrounding
environment.

An often useful method of model perfection is the use of a probabilistic
model—a model in which relations between output and input variables
are not fully determined, but only described by probability distributions
or by stochastic processest. But a probabilistic model remains a model;
to define it fully we must specify the types of probability distributions
and the parameters of these distributions, which again leads to identification
problems, etc. In some real applications better results are achieved by
applying probabilistic models, in others, deterministic modelsti. However,

T Since model parameters are understood as a special type of input variables, we can
assume that without loss of generality, the input/output relations are always non-pro-
babilistic, and only the input variables—and, consequently the output variables—may
be of a probabilistic nature. A probabilistic model can therefore be understood as one
in which at least one input variable is a random variable or a stochastic process.

t1 More precisely, nonprobabilistic models, because probabilistic models may also
be interpreted from a deterministic point of view. The terms determinism and in-
determinism are philosophical concepts, expressing a point of view on the character
of nature; the probabilistic and nonprobabilistic methods may be used by researchers
with either deterministic or indeterministic points of view (even though indeterminism
considers probabilistic models as ultimate, cf. the probabilistic theory of elementary
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both these types of model involve a basic inconsistency related to the
concept of mathematical model: the greater exactness of the model is
required (when the amount of experimental data is limited) the less confident
conclusions can be drawn regarding its form, parameters, and extent of
applications.

The inconsistency between the exactness and utility of a mathematical
model is one of the principal paradoxes in the history of science, in the
process of man learning about nature. The notion “physical, biological or
economical law” has been used in two senses. In one sense, it is understood
as an objective property of nature, of our environment. Owing to such
objective property, the behaviour of our environment can be scientifically
examined and is reproducible provided that the corresponding experiments
are conducted in the same conditions. In another sense, a law of nature
denotes its model, usually a mathematical model, formulated by man.
In this sense we speak of Newton’s laws, the Einstein laws or the probabil-
istic model of an atom. And even though such models are of tremendous
cognitive significance, it has always been so that their area of application
is limited, that more precise models can be constructed, often of a different
type, after a suitable amount of experimental data have been gathered
and analysed. Thus we are close to the conclusion that it is a methodological
error to attach an absolute value to a more-or-less perfect model, which
error can only partially be justified by the natural desire of researchers
to gain a better knowledge of nature by constructing ever-better models
of its objective laws.

Sensitivity analysis. In the applications of control theory the choice of
a model, when constructing purpose-oriented models for solving a particular
control problem, is to a great extent arbitrary, being the result of
compromise between the required exactness and the effort required to
collect a greater amount of experimental data and determine a more exact
model. Since absolutely precise models are not used (in fact do not exist),
the effect of model inaccuracy on decisions based on this model acquires
basic significance.

particles). Nevertheless the term deterministic model is still often used in the everyday
meaning of nonprobabilistic model, and it is in this sense that it will be used in the present
book.
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This problem is not new and its simpliest variant has been examined
in many fields of science. The basic variant may be formulated as follows.
A certain decision is considered which is supposed to have a specific effect
when applied to a given model. The first question is: how will the effects
of this decision change if we apply it to real life and not to a model? This
question can only be answered by practical tests which, however, may
turn out to be costly and time-consuming. Hence let us pose the next
question: how will the results of decision be affected if the model to which
this decision applies is changed (usually only slightly)?

Notice that in fact we are dealing here with two models; the first, on
which the decision has been based, and the second, for which the influence
of model changes on the results of the decision is analysed. These models
differ in their purpose and character. The first one represents the best
purpose-oriented approximation of our knowledge of the problem at
hand and serves for decision making. We shall call it the basic model.
The other one represents the possible deviations of reality from the first
model, more precisely—those deviations which we consider to be crucial
and likely to occur; we shall call it the extended model, because it is usually
more complicated than the basic one.

Consider, by way of example, a problem of tolerance analysis, that is,
the examination of the correctness of an engineering design while allowing
for possible inaccuracies of the elements. Let the decision, based on the
basic model, relate here, for example, to the dimensions of mechanical
components; the extended model represents the possible inaccuracies of
these dimensions characterized either in a deterministic way by specifying
the tolerance limits, or in a statistical way by specifying the random
distributions of the deviations or their basic moments.

The need for a fully precise distinction between the two models, the
basic and the extended one, is not very apparent when only the first variant
of the problem is considered. It might seem that the analysis of one model
with changing parameters would be sufficient. In the above example it
seems to be immaterial whether an extended model which allows for
inaccuracies of dimensions (resulting, e.g., from the manufacturing method)
is considered, or if it is assumed that deviations of the same character
occur in the basic model (resulting, e.g., from inaccuracies in designer’s
calculations). Such a principle of relativity of the basic and extended model
deviations could be very useful, since it would contribute to a significant
simplification of the analysis. However, this principle, though it can be
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applied in many cases, is not universally true. It may give wrong results,
for example, when the basic model has extremal properties (i.e., if deviations
of any sign in the model result in decision deviations of one sign only).

The situation becomes even more complicated when we consider models
of control problems. One of the basic methods of decreasing the influence
of model inaccuracy on the results of control is the use of feedback or
closed-loop control systems. Instead of accepting that control decisions
are dependent only on a mathematical model of the problem (the so-called
open-loop control system, see Fig. 1.2a), we can use the mathematical model
to select a certain control law, which makes the control of the real process
dependent on the results of measurements of output variables in this
process (the closed-loop control system, see Fig. 1.2b).

(@) (b)

Mathematical Mathematical
model model
YCantrol u u u Y
decision [ feal process =—o [-' Control law = Real process ©
i

Fig. 1.2 Basic structures of control systems: (a) open-loop, (b) closed-loop.

The problem of the effect of model inaccuracy on the results of control
can then be formulated as follows: a certain control law is given, which
when applied to the given model brings about some expected results. How
would these results change, if the control law were applied to a real process
and not to the model? If experimental tests are to be preceded by a more
detailed analysis, then how do the postulated results of control change
when we change the model of the process to which the law is applied?

Of course, the selection of the control law is also a certain decision,
so the methodology of analysis does not change fundamentally. Thus
for a precise definition of the problem two models are required: the basic
one, on which the control law is based, and the extended one, which re-
presents the most likely and significant deviations of the basic model
from reality. The control law should be applied to the extended model
and the influence of model changes on the control results should be
examined.

However, the methodology of analysis changes since cases in which the
basic model and the control law resulting from it have extremal properties,
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are much more frequent. This is the case especially when control optimiza-
tion is performed, or the optimal control law is defined. Moreover, optimal
control systems can have open-loop or closed-loop structures as shown
in Fig. 1.2, as well as many other structures.

Examination of the influence of model inaccuracy on the outcome of
application of the control law resulting from it is called sensitivity analysis
of the control system. These studies have quite a history. For nonoptimal
control systems sensitivity, such investigations were started by Bode [12];
Tomovié was the first to devote a monograph to this problem [115];
further, the works of Kokotovi¢ and Rutman [57] as well as the others [18]
deserve mention. In all these publications, however, distinction between
the concepts of a basic model and an extended one is neither methodologically
analysed nor consistently pursued; also, conditions under which this
distinction is not necessary are not precisely formulated. This approach
resulted from the intuitional assumption of relativity of changes in these
two models; on the other hand, this assumption is correct in most cases
of nonoptimal control system analysis. The problem of optimal control
system sensitivity analysis was defined by Bellman [9] and next analysed
by Dorato, Pagurek and Witsenhousen [95, 133, 18]. These publications
already distinguish two models without which it would be impossible to
analyse the optimal control system sensitivity. However, they provide
no thorough analysis of the basic properties of these models and their
relation to the formulation of the optimal control problem. Pagurek
and Witsenhousen have achieved here a mathematically correct result,
which, however, presents serious interpretational difficulties. They have
proved that the linear approximations of the performance index changes,
caused by changes of parameters in open- and closed-loop systems, do not
depend on the use of feedback, and therefore are the same for both these
systems. From this fact a paradoxical conclusion was drawn that the perform-
ance index sensitivity is the same in both the closed- and open-loop
optimal control systems. Further works have either accepted this conclusion
or confirmed it under more general assumptions and in a different formula-
tion. Kreindler [62], accepting that the performance index sensitivity is
identical for closed- and open-loop systems, examined the differences of
state trajectory sensitivity in these systems. Kokotovi¢ et al. [58] have
gone further: assuming the possibility of an exact evaluation of parameter
changes and of an approximation of the control law by a Taylor series
expansion depending on these changes, they have proved that also higher
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derivatives of performance index changes can be identical for both the
closed- and open-loop systems. This trend has been pursued in a number
of other works [18].

The present author undertook studies in another direction [121, 122, 128].
While examining the basic conditions of control optimality and fundamental
properties of the basic and extended models, it is possible to prove that
the Pagurek—-Witsenhousen result is a natural outcome of these conditions
and properties, and, moreover, that it is true for any optimal control
system, not being limited only to the basic variants of open- and closed-loop
systems. One should not conclude, however, that this implies identical
sensitivity in open- and closed-loop systems. In view of the basic conditions
of control optimality, the sensitivity of different systems can only be
compared on the basis of second derivatives of the performance index
with respect to parameters (even though the first derivatives may be
non-zero, as optimization relates to control and not to parameters). Under
realistic assumptions the differences in the performance index sensitivity
can be very larget.

This trend was followed in many further works [7, 10, 25, 45, 82, 97, 114,
117, 118, 125, 135]. Chapters 2 and 4 of this book dealing with the sensitivity
analysis of optimal and nonoptimal control systems constitute a summary
and an attempt to synthesize the results of these works.

Chapter 2 deals with model sensitivity and control system sensitivity.
Model sensitivity analysis is considered to be the examination of changes
of solutions, output variables, or state variables of a mathematical model
due to changes of its parameters. Results of such an analysis are useful,
if the hypothesis of relativity of the extended and basic model parameter
changes is valid in the control system sensitivity analysis. Thus concepts
and properties of extended and basic models are also discussed in detail
in Chapter 2, the relativity principles, that is, conditions under which control
system sensitivity analysis is equivalent to examining the sensitivity of
only one model, being examined. Though a part of the detailed results
in Chapter 2 has been derived from earlier works, their presentation and

t Seemingly, this statement contradicts the results obtained by Kokotovi¢ et al. [58]
that also higher derivatives of the performance index changes can be identical. However,
the results of the quoted authors are based on the assumption that a precise measurement
of the parameter changes is possible and that these measurements are used for control
purposes. Such an assumption might be subjected to a methodical criticism: had it

been acceptable, then an expanded model could always be made equal to the basic one and
entire sensitivity analysis would be pointless.
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full interpretation is based on the generalization of the concept of a model
and on an analysis of the properties of extended and basic models.

Chapter 3 constitutes a preparation to Chapter 4. It deals with optimiza-
tion problems and methods for the determination of optimal control.
This chapter is a synthetic review of an extraordinarily wide range of
research results in this field, also taking into account some results of the
present author and his collaborators [42, 68, 73, 126, 129]. The systematics
of the material is taken from the present author’s work [39].

Chapter 4 is dedicated to the sensitivity analysis of optimal control
systems. It is a synthesis of research results obtained by the author and his
collaborators in this field. It contains a generalized formulation and
a detailed discussion of optimal control system sensitivity analysis, the
distinction between the extended and basic model analysis, an interpretation
of the Pagurek—Witsenhousen paradox, and several examples of differences
in performance index sensitivity. Different structures of optimal control
systems, conclusions on their applicability, as well as some more detailed
problems are discussed in this Chapter.

The present book is basically a monograph addressed to researchers
in the field. However, the more fundamental parts of it are formulated in
text-book form, to facilitate its use. It may serve as supplementary reading
for senior or graduate students of control sciences, computer sciences,
operational research, or systems sciences, and also for students of mathe-
matics interested in mathematical control theory. For its full use, a certain
mathematical knowledge in the fields of algebra, differential and difference
equations, operations calculus, the Laplace, Fourier, and Laurent
transforms, fundamentals of the calculus of variation and functional
analysis, mathematical statistics and stochastic process theory is required.

Although the book has a fairly theoretical approach, it gives examples
of the construction of specific models for industrial processes as well as
of the identification and utilization of these models for optimal control
purposes, together with sensitivity analysis. It may therefore also be of
interest to engineers designing complex systems of industrial control.

Many people have contributed to the creation of this book. The whole
staff of the Institute of Automatic Control of the Technical University
of Warsaw has influenced it, especially professor W. Findeisen, professor
A. Gosiewski, Dr. J. Pulaczewski, and Dr. J. Szymanowski. The following
workers participated directly in the research work on sensitivity analysis
of control systems: Dr. A. Dontchev, Dr. B. Frelek, Dr. M. Machura,



