s o . . TR TR —— . oo . s
it

AN INTRODUCTION
SABINA SAIB

N
\N

8663680

ADA:
AN INTRODUCTION

Sabina Saib

HOLT, RINEHART AND WINSTON

New York Chicago San Francisco Philadelphia
Montreal Toronto London Sydney Tokyo
Mexico City Rio de Janeiro Madrid

" To my husband, IThsan,
and my sons,
David and Joseph

Ada is a trademark of the U.S. Department of Defense. (Ada Joint Program Office)
The frontispiece photograph is courtesy of National Physical Laboratory, Teddington,
England.

Copyright © 1985 CBS College Publishing
All rights reserved.

Address correspondence to:

383 Madison Avenue, New York, NY 10017

Library of Congress Cataloging in Publication Data -
Saib, Sabina.

Ada : an introduction.

Includes index.

1. Ada (Computer program language) I. Title.
QA76.73.A35525 1984 001.64'24 84-27987

ISBN 0-03-59487-1

Printed in the United States of America
Published simultaneously in Canada
5678 039 987654321
CBS COLLEGE PUBLISHING

Holt, Rinehart and Winston

The Dryden Press
Saunders College Publishing

PREFACE

This book provides an introduction to Ada, a modern computer pro-
gramming language. The book assumes some background and familiarity with
computers but not with Ada itself. Central to this text are the many examples
and problems. Besides being helpful in learning Ada, these illustrations and
exercises can serve as models for you to create your own programs. The exam-
ples have all been tested using an Ada compiler. An introductory class may
omit the later chapters on more advanced programming techniques while an
intermediate programmer may prefer to skim the first chapters.

SOME BACKGROUND ON ADA

The programming language Ada was named after Countess Ada Augusta
Lovelace (1815-1852) of England. The frontispiece shows a picture painted
when she was nineteen, shortly after her marriage to Lord King.

Ada was born into a notable English family. Her father was Lord Byron,
the poet, who spent much of his time away from his family. Her mother, Lady
Noel Byron, encouraged Ada to develop her talents, one of which was an
aptitude for mathematics. Ada studied mathematics and became a friend and
collaborator of Charles Babbage (1792-1871), who designed and attempted to
build a mechanical digital computer or what he called an “analytical engine”

X % PREFACE

Ada is best known for her translation of an article about Babbage’s com-
puter. She not only translated the article but added her own notes to the paper
that included the instructions for a computer program to calculate a table of
Bernoulli numbers used in the solution of differential equations. As a result,
Ada is known as the world’s first computer programmer.

Ada is a high-level programming language with roots in a research lan-
guage called LIS. Certain features were also borrowed from such modern
programming languages as Pascal. The first Ada compiler was developed for
a Digital Equipment Corporation computer, the VAX 11/780, by the Courant
Institute, New York University in 1983. This compiler, called Ada/ED, was
used to test the programs in this book. There are Ada compilers available
today for mainframe and minicomputers and also for the most popular
microcomputers.

A well-supported language, Ada has been designated by the U.S.
Department of Defense as its official computer language. The U.S. govern-
ment intends to make Ada compilers available on many computers at a nom-
inal charge through the National Technical Information Service. The Ada com-
piler will be supported with numerous tools to aid in the design, preparation,
testing, and maintenance of computer programs written in Ada.

Ada is an American National Standards Institute language, and there is
a reference manual available from the U.S. Printing Office. After you have
mastered Ada, you may want to order this manual to help you in writing your
programs.

To learn more about Countess Ada Augusta Lovelace:

Moore, Doris Langley. Ada, Countess of Lovelace New York: Harper & Row,
1977.
Ada’s program:

Menabrea, L. E. “Sketch of the Analytical Engine Invented by Charles Babbage
(with notes by the translator Ada Augusta, Countess of Lovelace),” in Bab-
bage’s Calculating Engines, New York: Dover, 1961.

The official Ada reference manual:

U.S. Department of Defense, Reference Manual for the Ada Programming Lan-
guage, ANSI/MIL-STD-1815A (February 1983).

More about LIS:

Ichbiah, J. D., and G. Ferran “Separate Definition and Compilation in LIS
and its Implementation.” In Lecture Notes in Computer Science, Cornell Sym-
posium on the Design of Higher Order Languages, New York: Springer Verlag,
1977.

86639

ONTENTS

PREFACE 1X
SOME BACKGROUND ON ADA
CHAPTER 1 INTRODUCTION 1

Computer Programs 3 ¢ Simple Ada Programs 5
What Have You Learned? 14 « Problems 15

CHAPTER 2 NAMES IN ADA 17

Identifiers 17 ¢ Keywords 18 < Predefined Names 19
Comments 20 « Structure of an Ada Program 21
What Have You Learned? 22 + Problems 23

CHAPTER 3 PReEDEFINED DATA TYPES 25

Integer 26 + Character 29 + Boolean 32 + Float 36 =«
Fixed 39 + What Have You Learned? 39 « Problems 41

CHAPTER 4 CONSTANTS AND EXPRESSIONS 43

Constants 43 + Expressions 45
What Have You Learned? 52 ¢ Problems 53

CHAPTER 5 CONTROL STRUCTURES 54

Conditional Control 55 «
Loop Control 67 « Unconditional Transfer 75 «
What Have You Learned? 76 + Problems 78

vi % CONTENTS

CHAPTER 6 USER-DEFINED TYPES 80

Enumerated Data Type 81 + Attributes 85
Subtype 88 + Conversion Between Types 89 =
What Have You Learned? 91 « Problems 92

CHAPTER 7 ARRAYS, STRINGS, AND RECORDS

Arrays 94 « Array Attributes 98 « Loops and Arrays 99 «

94

Two-Dimensional Arrays 100 « Array of Array 103 « Strings 103

Bit Strings 106 « Array Subtypes 107 « Records 107 «
What Have You Learned? 110 « Problems 114

CHAPTER 8 SUBPROGRAMS 116

Procedures 117 « Functions 124 «
What Have You Learned? 130 =« Problems 132

CHAPTER 9 FORMATTED INPUT AND QUTPUT

Formatted Output 134 «

Formatted Strings and Characters 137
Formatted Input of Numbers 144 «

What Have You Learned? 145 s Problems 146

CHAPTER 10 PACKAGES 147

Package Specifications 147 «

Data Packages 148 « Program Packages 150
Program Library 151 + Package Bodies 153
Package Design 155 « Package Initialization 158 «
What Have You Learned? 158 + Problems 160

CHAPTER 11 OVERLOADED OPERATORS

Variable String Operations 163 «
What Have You Learned? 174 + Problems 175

161

CHAPTER 12 GENERIC SUBPROGRAMS 177

Private Parameters 178 « Enumeration Parameters 179

134

CONTENTS ** vii

Integer Parameters 180 « Floating-Point Parameters 181 «
Fixed and Limited Private Type Parameters 182 «

Packages and Procedures 182 ¢ Formal Parameters 184 «
Subprogram Parameters 185 «

What Have You Learned? 187 + Problems 189

CHAPTER 13 DISCRIMINANTS 191

Size Specification 191 « Field Name Specification 192 «
Default Values 194 « Sets of Values 194 « Various Shapes 195 «
What Have You Learned? 197 + Problems 198

CHAPTER 14 LisT PROCESSING 199

Creating a List 199 « Manipulating a List 208 « Trees 209 «
What Have You Learned? 215 ¢ Problems 217

CHAPTER 15 PRIVATE TYPES 219

What Have You Learned? 224 + Problems 224

CHAPTER 16 UsIinG ADA FOR DESIGN 226

Modularity 227 « High-Level Design 227 «
Top-Down Design 230 «

Top-Down Versus Data Oriented Decomposition 234 «
Bottom-Up Design 238 =

What Have You Learned? 238 + Problems 239

CHAPTER 17 FILES 241

Associating Names With Files 242 + Sequential Files 243
Random Files 248 + What Have You Learned? 250 « Problems 252

CHAPTER 18 TASKING 253

Totally Independent Tasks 253 + Synchronized With Wait 255 «
Synchronized With Optional Communication Points 263 «
Timeouts 267 « Task Types 269 «

What Have You Learned? 270 < Problems 273

viii < CONTENTS

CHAPTER 19 EXCEPTIONS 275

Abandon or Continue Execution 275 «

Naming and Raising Exceptions 277 « Exceptions Handlers 278 «
Retry 279 « Use Another Approach 280

Clean Up 281 + Exceptionsand Tasks 282 =

What Have You Learned? 282 « Problems 285

CHAPTER 20 REAL TIME INTERFACES 287

Word Formats 288 « Converting Data 291 « Interrupts 295 «
Machine Code 296 « Interface to Other Languages 298 « A Modem
Interface 299 « What Have You Learned? 300 « Fixed Point 303
Problems 304

CHAPTER 21 THE ADA ENVIRONMENT 306

Tools in the Ada Environment 306 «

APPENDIX A PREDEFINED IDENTIFIERS 309

APPENDIX B ASCII CHARACTER SET 311

APPENDIX C INPUT OUTPUT PACKAGES 314

APPENDIX D ATTRIBUTES 322

APPENDIX E PRAGMAS 333

APPENDIX F PACKAGE STANDARD 336

APPENDIX G PACKAGE SYSTEM AND PACKAGE
CALENDAR 342

GLOSSARY 344

INDEX 351

CHAPTER

& 1 &
[NTRODUCTION

Ada is a high-level programming language used to communicate instruc-

tions to computers. It would be ideal if we could communicate with
computers in English, but computers are not yet as smart as we are, so we
need special languages to talk to them. Ada is one of many such special
languages.

We call Ada a high-level programming language—this implies that there
must also be some lower level programming languages. And indeed there are.
While many programmers work with these lower level languages, they have
several drawbacks.

One drawback is that working with them is tedious, time-consuming,
and error-prone; the languages themselves are often not very meaningful
unless you are a programmer trained in one computer’s specific machine lan-
guage, the lowest level programming language and the language that speaks
directly to the computer’s hardware. Programmers communicate with a com-
puter in machine language with a stream of numbers,

1000 10 07 00002
1001 20 03 02002
1003 04 03 02003

which the computer interprets as an instruction to add, print, store, or so
forth.

Another drawback to machine language and other low level languages
is that they are machine-specific; a program written for one kind of computer

2 < ADA: AN INTRODUCTION

cannot be used on any other. This also holds true for assembly language,
which is the next level above machine language.

Assembly language is a step removed from machine language in that you
write your commands using numbers, letters, and short words:

ORG 1000
LDA 2
ADD C
STA X

Each assembly language command translates into one machine language
command, which is made up of the stream of numbers we saw before. The
computer program that performs this translation is called an assembler.

While an assembly language command such as ADD is more meaningful
than the machine number 20, which might also mean add, the program is still
far from readable. Another drawback to assembly language is that each com-
puter has its own assembler program and machine language. Programs writ-
ten in assembly language cannot be moved from one kind of computer to
another.

There are many higher level languages such as FORTRAN, the forerun-
ner of most of these languages. These languages use commands that are more
readable than assembly language, looking something like English and math-
ematical notation. As with assembly language, these languages also need
translators to turn their commands into machine language; these translators
are called compilers.

Ada is a higher level language similar to FORTRAN. However, because
Ada is an American National Standards Institute standard and is designed to
be used on a variety of computers, it will be the same across all these com-
puters. There will be no omissions or enhancements in Ada compilers, which

ASSEMBLY N _ MACHINE
LANGUAGE > ASSEMBLER > | ANGUAGE

HIGHER LEVEL | _ MACHINE
LANGUAGE —> COMPILER > LANGUAGE

ADA . ADA _ MACHINE
PROGRAM COMPILER " LANGUAGE

Figure 1.1 Levels of Languages

INTRODUCTION % 3

is not the case with most other programming languages. These enhancements,
sometimes called supersets, and the omissions, called subsets, have made trans-
porting programs across computers difficult.

Another Ada advantage over other high-level programs is that Ada pro-
grams use complete English words instead of cryptic abbreviations. This means
that programmers can use meaningful names in writing their programs instead
of being limited to using very short names. It’s still up to programmers to
make the programs comprehensible to their colleagues, but Ada at least pro-
vides a means for them to do so.

Ada can also detect errors very early in the preparation and testing of a
computer program, a process known as error-checking. It also possesses pow-
erful constructs for writing programs that programmers previously could write
only in assembly language.

Even higher level languages than Ada exist. However, these languages
are designed for special application areas such as surveying or structural
analysis—Ada was designed for general rather than special applications.

DRAW CIRCUIT
HIGHER LEVEI

APP
LICATION LANGUAGE) LANGUAGES

HIGHER LEVEL LANGUAGE

ASSEMBLY LANGUAGE

1011 1007 0003
MACHINE LANGUAGE

JV LOWER LEVEL
LANGUAGES

Figure 1.2 Computer Programming Languages

COMPUTER PROGRAMS

A computer program is made up of a series of commands written in a language
understandable by a computer. Analogies to computer programs are the
instructions you see on the back of a shampoo bottle, the steps in a recipe, or
the directions to a friend’s house. The shampoo analogy is a good one because
the instructions on a shampoo bottle usually ask you to repeat all the steps.
The English instructions that you see on the shampoo bottle make up
what is called an algorithm, a specific sequence of steps you use to solve a

4 <% ADA: AN INTRODUCTION

Wet hair

® Measure out
shampoo

® Apply shampoo
to hair

® | ather

® Rinse well

Repeat once

_ /

Figure 1.3 Algorithms

problem. You can think of an algorithm as a computer program written in
English.

Creating an algorithm is considered more difficult than actually writing
the program once the algorithm is given. To design an algorithm, the problem
is first divided into relatively large steps, each of which is further subdivided
into smaller steps. This subdivision or refinement of the algorithm is very
important in developing large programs—this way individual programmers
can each work on a small part of the problem and their efforts are then com-
bined. In most algorithms for computer programs, there is a great deal of
repetition in the instructions—repetition is something that computers are able
to handle very nicely.

The data for the program are also a part of programming. You will have
many choices as to how to represent, store, and operate on the information
needed by a computer program—the way data are handled in the computer
is very important. We will see that decisions on how data are stored and
operated on using computer algorithms can make a program easier to under-
stand, can cause a program to compute faster, and can help prevent program-
ming errors, especially when the program is changed.

INTRODUCTION % 5

SIMPLE ADA PROGRAMS

Although you may not be using the same compiler as the one used in the
preparation of this text, the programs given in this chapter and throughout
the book should word on your computer just as they did when they were
prepared. Enter the programs exactly as they are shown. Your computer termi-
nal probably has a TVlike display and a typewriterlike keyboard. You will
prepare your Ada program using an editor and the Ada compiler and then
execute or run your program and view your results on the display.

A very simple Ada program that you should type into your terminal,
translate with the Ada compiler, and execute on your computer is shown
below:

with TEXT_IO;

use TEXT_I0;

procedure SIMPLE_ADA is

--This is a simple Ada program

begin

--It displays the message within quotes on the terminal
PUT_LINE ('' Hi there, I am a very friendly computer! '');

end SIMPLE_ADA;

When compiled and executed this simple program will cause the com-
puter to display, “Hi there, I am a very friendly computer!” on your terminal.
Out of the eight lines in the program, only one line causes this to happen.
Lines that cause the computer to do something are called executable lines. The
line that started with PUT_LINE is the single executable line or statement in
the program. The remaining lines set up the program.

You'll note that the program was written using a combination of upper-
and lowercase letters. Ada does not differentiate between upper- and lower-
case in interpreting the program commands. A bold typeface differentiates
some important words to Ada called keywords. Since you do not have boldface
on your terminal, you will type the keywords just like all the other words in
your program. The keywords are sometimes called reserved words; they have
a special meaning to Ada and must be used according to its rules. There are
only 63 keywords in Ada, this program used six of them: with, use, procedure,
is, begin, and end.

The first two lines in the program, with TEXT_IO and use TEXT_IO,
appear so often in programs that some Ada compilers assume they exist even
though you have not typed them in. These lines tell the compiler that you
want to input some information into the computer and receive some output
from the program. Almost any program you write will input some information
and output some results. This program’s output was the message displayed
on the terminal, “Hi there, I am a very friendly computer!”

Ada uses programs that have been written and stored in a program library
for input and output. A program library is made up of library units, each of
which is a previously prepared program or, more likely, a collection of previ-
ously prepared programs. The with statement (the first line in our example)

6 < ADA: AN INTRODUCTION

names one or more program library units—we can use these programs in our
program merely by naming them. The name of the program library unit in
our example is TEXT_IO. The semicolon following TEXT_IO ends the state-
ment. If a program has a with statement, it will always be the first statement
to appear in the program. The simple form of the with statement is:

with program library units;

where the italicized portion of the statement stands for something that must
be filled in. We filled it in with one of the standard program library units
available with Ada compilers, TEXT_IO. We will learn more about the with
statement in chapter 10.

The program’s next line is the use statement, which names a package of
programs in the program library unit named in the preceding with statement.
A package is a collection of related programs and data; packages can also
contain packages for organizing programs together in a large collection. For
example, think of a law library, which might be part of a larger library system,
as a package. A law book from that library would be considered a package in
the library. As with the books in a law library, the packages that are part of a
larger package should all be related.

1=
1=

()
[

with a_library;--Ada library of packages
use a_book; --Ada package in program library

with LAW_LIBRARY;
use LAW_LIBRARY.TORTS;

Figure 1.4 Law Library

INTRODUCTION <% 7

In our example, we want to access all the packages in the library, so we
name the entire package in the use statement. The use statement is not con-
fined to the beginning of the program and can appear in several places. Until
we learn more about it in chapter 10, however, we will employ use for input
and output and keep it separate in front of the program. The simple form of
the use statement is:

use package name;

As we saw, semicolons end statements. You can type more than one
statement on a line if you wish, but most programs look better if you just type
one statement per line. You can also spread out statements across several lines;
for example, the first two lines in our program could have been written on
one line:

with TEXT_IO0; use TEXT_IO;

But again your program will be more readable if you keep statements to just
one line wherever possible.

The third line in our example names the program SIMPLE_ADA. We
could have given it any name as long as we started the name with a letter and
used only letters, digits, and the underscore in the name. For example, we
could have named the program EXAMPLE_1 or FRIENDLY_COMPUTER_
PROGRAM or any other name conforming to Ada’s rules. It is better to pick
meaningful names for your programs than names such as PROGRAM_1 or
TODAYS_JOB. The name of your program can be as long as you like so long
as it fits on one line of your terminal (usually 80 characters).

In Ada, the instructions that tell the computer what to do and the data
used in the program make up a computer program. The instruction or exe-
cutable part of the program is contained after the keyword begin and before
the keyword end. The data declaration is contained after the keyword is and
before the keyword begin. Thus the usual layout of any Ada program after
the statements that tell it which library and packages to use is:

procedure program name is
declaration part
begin
executable statements
end program name ;

The program we wrote is also called a main program, a procedure, or a main
procedure. When we write a single procedure, it is always the main procedure.
When we write a collection of procedures, we will place them in a package
and have a main procedure that will use the package. It is good practice to
line up the keywords procedure, begin, and end as shown in the example.
An Ada compiler will still run your program if you don't line them up, but
people who read your program will rely on your nice layout. In chapter 8, we
will see how to write procedures that work together.

8 « ADA: AN INTRODUCTION

The top part of our simple example had no data declaration statements.
We had, instead, a comment, special text set off with two hyphens. Comments
can contain English text to explain what the program does—such information
is called program documentation. Comments in Ada do not need to end with a
semicolon because the end of the line ends a comment. Some good things to
put in a comment are your name, the date, the version of the program, and
of course what the program does. Comments can be placed anywhere in an
Ada program, even on the same line as a statement, but that makes the rest
of the line a comment. A well-commented program will be more understand-
able because you can explain what you are doing in the program in plain
English. The general form of a comment is:

-- English text

Note that the second comment in our example tells what the program
does—that it displays the message within quotes on the terminal.

The only output statement in this program—PUT_LINE (“ Hi there, I
am a very friendly computer! “’);—causes output to a terminal, or for those
computers without terminals, causes output to a printer. PUT_LINE is actually
another program prepared for your use and put in the TEXT_IO package. To
use PUT_LINE, you give its name and place what you want to be displayed
within parentheses. Text messages such as were used in the example require
quotes around the message. The statement ends with a semicolon. The general
form of the PUT_LINE statement for messages is:

PUT_LINE (“ message ') ;

The message must be able to fit on one line. If your message takes more
than one line, all you have to do is use more than one PUT_LINE statement.

In our second example, we will use several PUT_LINE statements to
form a picture.

with TEXT_IO;

use TEXT_IO;

procedure VALENTINE is

-- A program to draw a heart

begin
PUT_LINE (" XXX XXX "e
PUT_LINE (" x X X X M)s
PUT_LINE (" x X X M)y
PUT_LINE (" x X "),
PUT_LINE (" X X ")
PUT_LINE (" X X ")
PUT_LINE (" X X "y 2
PUT_LINE (" X X "y e
PUT_LINE (" X "y

end VALENTINE;

