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PREFACE

HE course of Practical Physics described in this book

is based upon that followed in King’s College, London,

by students who have completed their Intermediate
Course, and who are proceeding to a Pass or Honours Degree.
This has been extended, and it is hoped that the book will be
useful to a wider circle of students of Physics than thoseimmediately
concerned with University Examinations.

A number of well-known Physicists have contributed to the
development of the King’s College course, amongst whom we
may mention Professors H. A. Wilson, C. G. Barkla, H. S. Allen,
and W. Wilson, who formerly worked here in the Wheatstone
Laboratory, and Professor O. W. Richardson, the present occupant
of the chair.

The general aim has been to provide with each experiment a
short theoretical treatment which will enable the student to
perform the experiment without immediate reference to theoreti-
cal treatises. To aid this scheme an introductory chapter in the
Calculus has been included. This chapter is an innovation in a
book of this type, but it is hoped that the student will find here
a bridge over that period during which his Physics demands
more advanced mathematics than his systematic study of that
subject has yet given him.

We take this opportunity of expressing our gratitude to
Professor O. W. Richardson, who has allowed us to make use of
laboratory manuscripts and results of experiments. We are also
greatly indebted to our colleagues and fo Mr. G. Williamson, who

have given us many suggestions, and to the Honours students of
v
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the past session who have supplied us with numericaland graphical
results. We have been greatly helped by the ready assistance
on the part of The Cambridge and Paul Scientific Instrument Co.;
Messrs. Elliot Bros., Gambrel, Ltd., Adam Hilger, Ltd., W. G
Pye & Co., and the Weston Electric Co., who supplied us with
the blocks for many of the illustrations.
B.L W.

WHEATSTONE LABORATORY, H.T.F

UNIVERSITY OF LONDON,

KinGg’s COLLEGE.
March, 1923
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ADVANCED PRACTICAL
PHYSICS FOR STUDENTS

INTRODUCTION TO DIFFERENTIAL AND
INTEGRAL CALCULUS

The Diflerential Caleulus

§1. ANy quantity x which may assume a series of values is called
a variable quantity or simply a variable, and if its value does
not depend on that of any other quantity it is called an
independent variable.

On the other hand a quantity y, which bears a particular
relation to x, assumes values which depend on the values of x,
and for this reason is called a dependent variable. We may
have for example :

¥ =2% — 3.
Here y takes values which depend in a quite definite manner

on those of x.
We may also have a dependence defined by the relations :

y=sinx, y=1logx, and y = e~

Such expressions as 2x — 3, sin %, log #, etc., are called functions
of %, and when we say that y is a function of x we mean that

y depends on the values that x assumes.
In case we do not specify definitely how y and x are related

we write
y = f(x).

f(x) denotes any function of x.

It is often convenient in Physics to show by means of a diagram
the relation between two variables ¥ and x. For example, a
record may be required of the atmospheric pressure at various
times. Such a record is drawn automatically by a self-recording
barometer so that it can be seen hqw the pressure and time are
related. Here we have as independ®nt variable the time and
the Yependent variable is the barometric pressure.

1 1
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In fig. 1, the curve represents the relation between x and y
and the shape depends on the way y and » are connected.

Y

|
l
|
|
|
|
M,

If y = 2x — 3, the curve becomes a straight line, and
if ¥ = sin x, we have the familiar sine curve, fig. 2.

0 T n\iﬁyan
FiG. 2 -

A function is said to be a continuous function of a variable
when the graph representing it is a curve in which there is no
sudden change in value of the ordinate at any point. In sucha
curve, if we approach a point where x = a, from left to right,
we find a certain value for y, and if we approach the point from
right to left we find the same value. In fig. 3 we have an example
of a function which is discontinuous at x = 0. If we appgroach
the origin from left to right the value of y is very great and
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negative in sign, while in approaching from the right y is very
large and positive. In nature we are chiefly concerned with
continuously varying quantities, If a train is at rest at a station
at a particular instant, and is observed to be moving with a
velocity of ten miles per hour ten minutes later, it must have

Y

Y
FiGc. 3

possessed every possible velocity between zero and ten miles per
hour during the interval.

The speed is continuous, and if it depends on the lapse of time
from the start it is said to be a continuous function of the time.

We do not contemplate the possibility that the train could
possess a speed of five miles per hour at one instant and at the
next without any interval whatever a velocity of six miles per
hour. If this were possible we should describe the speed as
discontinuous, because it had no value between five and six. If
this were so we should consider that our powers of observation
were at fault, and we should describe the motion as changing
very rapidly between five and six miles per hour ; so rapidly that
we had failed to detect the lapse of time in which the change

took place.
Discontinuous functions are of frequent occurrence in Mathe-

. . 1
matics. Consider as an example the case of ¥y = >

. s 1
When x is a very small positives number, let us say To¥

L
y is large and has the value 108
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On the other hand if x = — I—;%, y is large in magnitude but

negative, it equals — 10

As x passes through the value zero y suddenly leaps from an
enormously large negative value to a very great positive value,
and has no value between. .

This is represented in the diagram, fig. 3. The curve has
two branches: they are the two parts of the rectangular
hyperbola

xy = 1.

We shall not be concerned with such functions so we dismiss
them briefly. It is to be borne in mind that our applications of
the Calculus are to continuous functions only. The results we
obtain must not be applied to discontinuous functions without
closer examination.

It is important to understand the meaning of the limit of a
function.

Suppose y depends on x, and that as x approaches the value q,
y approaches the value b.

b is called the limit of y as x approaches a, and we write :

Lim. y —— b
X—>a

If reference be made to fig. 1, as x approaches the value OM,
y approaches the value M,P, and M,P, is actually the value
of y when ¥ = a.

Cases occur in which the conception of a limit is not so simple.
If we examine the curve

1
YT x
in the neighbourhood of the origin as x —> o0, we obtain
a different value of y according as we begin on the right or left
of the origin.

On account of the discontinuity the limit of y as x approaches
zero is not definite.

Another case occurs in which x may continue to increase to
any extent while y continually approaches some particular value.

We may turn once more to the curve

I
y=5
As x gets larger and larger, y gets smaller and smaller approaching
the value zero.

We may get as near zego* as we please by making x larger.
For example, we may make y as small as one-millionth by
choosing x = 108
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This is a very important point in defining a limit. Tt must
be possible to get as close to the limiting value as we please by
choosing x properly, although it may not actually be possible
to cause ¥ to attain the limit. We have in our example a case
in point. y is never zero however large x may be, but it is
possible to make y nearer and nearer zero by increasing x.

The former definition of the limit of a function is not very
satisfactory. A limit is accurately defined as follows :

The limit of @ function of x is some number, b, such that as %
approaches a particular value, a, the difference between b and the
Junction may be made as small as we please by taking x sufficiently
near a.

§2. In describing natural phenomena by means of equations,
simplifications are often brought about by neglecting certain
terms in comparison with other more important terms.

Suppose an equation is obtained which we may write :

Al + B, +C2+D2=E1 +Fa'

The suffix numbers denote the order of importance of the terms:
that is to say, 1 denotes that the term is to be regarded as of
first importance, or it is of the first order of magnitude. The
2 and 3 denote that the terms are only of second and third
degrees of importance, they are of the second and third orders.

If we wish to include terms of the first and second orders we
omit F,, while if only terms of the first order are to be considered
the equation becomes :

A, +B,=E.

Great care has to be exercised in thus drawing up a scale of
magnitude,and this leads to a short consideration of infinitesimals.

Suppose a quantity X is divided into 1000 equal parts, these
again subdivided in the same way, and so on. We then have a
series of values :

X

' ’ '
103 106

X

which provides a scale of magnitude.
If circumstances do not permit of accurate observation of
quantities less than those of the same order as X we regard

X X
10% 10%’

Generally, if fis a small fraction, ie. small compared with
unity :

etc., as negligible,

1X, f2X, X etc.
are all small compared with X, and are said to be small quantities
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of the first, second, third, etc., orders. If these small quantities
have zero limits they are called infinitesimals.

In equations between infinitesimals only the terms of the
lowest order are to be retained, i.e. the terms of greatest magni-
tude.

This is made clearer by an example which has important
Physical applications.

0’ A L
A N B
Fi16. 4

In fig. 4, AB represents the radius of an arc, BP, of a circle
which subtends an angle 6 at A.

PN is normal to AB.

BT is also normal to AB cutting AP produced in T.

It may be regarded as an axiom that :

PN < arc PB < BT.
We shall examine the order of the differences between these
quantities if  be regarded as of the first order of small quantities.
By expansion of sin 6 and cos 6 in powers of 6 we have :

. 03 63
sin 6 = 6 — ’1—1 + (I)
D .

50
62 64
coS 6= 1 — E! + 4._! — b s e e e e (2)

If only small quantities of the first order are retained :

sin 6 = 6.
cos 0 = 1. } ............. (3)
PN = a sin 6.
PB =a 6.
. g3 95
.-_PB—PN:a(B—-smo)_—_a{?ﬁ__s_! }

This difference is of the thigd order.
Thus up to considerationd of magnitude of the third order:

PB = PN.
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Again
BT = atan 6.
62 2
:a(ﬂ—}—?—}— -1505—{-—' . ),
as may be shown by division of the expressions for sin 6 and cos®.
Thus BT — arc PB = a quantity of the third order of magni-
tude.

Fi1G. 5

BN =a — AN = a(1 — cos §) = a quantity of the second
order of magnitude.

Thus, if we regard 6 as of the first order and retain only this
order in our equations we may write :

BN =0, PN = arc PB = BT.

and with the exception of BN = o this is true for the case when
second order quantities are retained.

Extensive use is made of these relations in Geometrical Optics
in the first study of reflection and refraction in mirrors and lenses.

In the case of a mirror, for example (see fig. 5), when the angle
6 is small, i.e. when the rays from an object, P, strike the mirror
at M not far from the pole, O, we establish certain formule by
assuming that O and N may be regarded as being coincident.

P

N
Fi16. 6

This is because we do not retain quantities of an order higher
than 6. Thus NO = o by the foregoing considerations.

Another important case is the galculation of the order of the
difference between the sum of twd sides of a triangle and the
bate when the base angles are of the first order of small quantities.
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Referring to fig. 6, we have as for fig. 4,

PA — AN = a quantity of the second order in 86,
and similarly PA! — AN is of the second order in 6t

. PA 4- PA'* — (AN + A'N) = a quantity of the second
order since 9 and 6! are by the data small quantities of the first
order.

5. PA + PAT = AN + AN = AA!
to the first order.

This result is made use of in the establishment of Fermat’s
Law of the extreme path which plays a fundamental part in
Optics. (See for example Houstoun’s * Treatise on Light,”

17.)

P We consider as a final example the difference between a chord
and an arc both subtending the same small angle 8 at the centre
of a circle.

Thus, again referring to fig. 4, we require the difference between
chord BP and arc BP.

arc BP — chord BP = 26 — 24 sin Ea

alo (25 Ye)
= a { — 2 ( E - 3*! 8 .. s
= a quantity of the third order.

We can thus regard the chord and arc as equal up to and including
quantities of the second order.

It should be noted that the successive orders are vanishingly
small with regard to the terms earlier in the scale, e.g. in com-

paring
a6, bo2, 63

. . o2
if 61s of the first order, 20— = bo so that as § —— 0 b82——> 0
a

infinitely more rapidly than a6, and the same holds for any two
consecutive terms in the scale.

The ratio of two quantities of the same order will be a finite
quantity—not a vanishing or negligible quantity, but the ratio
of two quantities of differing order (igher order — lower order)
is vanishingly small.

We are concerned with small variations of this kind in the
differential Calculus.

§3. The Differential Coefficient

Let ¥ be a function of geand suppose x varies by a small
quantity which we denote by éx. In consequence of this varia-
tion y will vary a small quantity, say dy.
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The ultimate ratiog—zwhen dx becomes very small is called
the differentia} coefficient of y with respect to x. It is denoted

by Zi%y and wrgtten %c and sometimes denoted simply by Dy.

In accordange with our notation we may write :

dy _ Lim. sy

In general the quantities dy and éx are of the same order of
dy

magnitude, and Tx is a finite quantity.
In order to illustrate this, consider the relation :
y =2% — 3.
Let x become x + éx, then the new value of y is
2(x + éx) — 3
Le. y+dy =20+ ) —3
= ¥y + 26%.
.0y = 24x.
¥ _
e

Now no matter how small éx becomes, the ratio is always 2, for
éy is of the same order as 6x, and their ratio is finite and equal

to 2.
We have a simpler case still in the differential coefficient of

a constant.
A constant is a number that does not depend on the variable.

Thus, if y = A it does not matter how x varies, ¥ still remains
= A. Thus there is no change dy corresponding to a change odx.

Hence @y _ o if y is a constant.

ax
dy . dy .
It should be noted that Ix does not mean dy -+ dx. g 52 short

notation for the operation of finding the ultimate ratio %

Nevertheless Physicists continually appear to use the coefficient
as if it meant dy =+ dx, and it is not a rare occurrence to find

an equation :

:xz

dx
written alternatively dy = x%dm
This 3s, in fact, a very convenient mode of expressing the result,
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and it means that dy and dx now no longer retain the same
significance. The second of these means :

dy = x2dx.
. . d : .
We have in the equation d% = x? an expression of the rate of

variation of y with respect to x at a particular point on the
curve, which represents graphically the relation between y and x.

The alternative equation means that in the neighbourhood
of this point we can calculate a small change &y corresponding
to a small change éx. This point rarely causes difficulty in
practice, and it is obviously inconvenient to change to and fro
from d to 4, but to be strictly accurate we must bear the
distinction in mind.

The definition of the differential coefficient gives the clue to its
determination. We will not determine its value for more than
one or two cases but be content with reference to a table of
values of the important coefficients.

The Differential Coefficient for x™ where % is any Number.

Write :
¥y = x"
dx\"
y+ oy =(x+ o) =2a" (1+ ;)

o [0 ()

I-2 x
= x" 4 nx""1- 0x ??-(-nil__z_ n. 2 (ox)t + . ..
= ptas 1 5
y n(n — 1) _— )
P e o A higher powers of éx.

dx is a quantity which we have called infinitesimal. In the

. . 4
next step of finding the limit of 5% we shall suppose éx a quantity

of the first order of magnitude. It is therefore infinitesimally
small with regard to the finite quantity nx»-1.
We thus neglect all quantities of higher order than nx"! and
have : R
dy °* Lim. 4y -
dx ~ sx——o0dx )
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Differentval Coefficient of sin x.
y 4+ 8y =sin (¥ 4 8x) = sin x cos éx + cos x sin &x.
We need retain only quantities of the first order on the right.

Thus : cos 8x = I, sin éx = dx, by equation (3).
y + dy =sinx + cos x - Ox.
dy = cos x - dx.

dy
or - =cosx.
Similarly @ Cos ¥ = — sin x.

dx

Diﬂerential Coefficient of log x.
y + 8 = log (x + &) =logx(I—;— ";")
=log ¥ + log(r. + é—’f)
logx+{-~—~(§f) + .

2\ X

[——

Retaining quantities of first order only :

I
6y=5x‘;6.
Ldy 1
Tdx x
or —dlogx:{.
ax x

The same method of treatment can be applied to other cases.
In the case of a function f(x) we write :

dy  Lim. f(x 4 ox) — f(x).
dx  ox——>o0 ox

The Differential Coefficient of the Sum of two Functions.

If y =sinx + cos x
we have d_y = COS ¥ — SsIn %.
ax

From the definition it follows that the differential coefficient
1s the sum of the differential coeﬂicxents of sin x and cos x.
In the general case if :

Y=Yty
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where y, and y, are any two functions of x:

dy dy 1 dv2 .
dx  dx 7
And similarly if Y=y —Y2
dy _dyy _ D2
dx dx  dx

Differential Coefficient of a Product.

Let Y =51V,
where y, and y, are any two functions :
e.g. we might have ;
y =sinx X z",
sin x# and x% are two functions of x.
Suppose that x becomes x -+ éx and in consequence y increases
toy + 8y, y,t0y: + 8y, yato y, + 9y,
Then
Y+ &y =y + &) (y: + W)
=Y1Y2 T Y192 + 1Y + 16y,
Since Y =¥1Ya
LY =519 + &Yy + 18y
4y,9y, is a term of the second order, and the other terms are
of the first crder.
Thus we need not retain it.
Dividing throughout by éx.
L. T

Hence in the limlt
2y — @, dV]
dx 2V dx T
In a product we differentiate one factor at a time, leaving the
others unchanged, and add all the resulting expressions together.
This is true for any number of factors, as may be shown in
the same way.

Thus, if
Y =Y1YYde iy, i
dy dy, 2y,
B = YOV ARG A I G I+ Ty
e.g. y=sinx X x* .

d
d—i’—smx #nx"~1 4 cos x - ™
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The Differential Coefficient of a Quatient.

We use the same notation as before and apply the same
principles.

N
’ =9,
Y1+ oy
Sy — 21 T 1
Y+ oy Y + 9,
sy =21 E W1 Y1 %% = %
e )
Ye
— (JM)(I _ s
¥s® y
= Jiylﬁbiy-z (retaining only terms of first order .
2
W1, e
Sy _yg o 7' ox
Do ¥a?
4y, @y,
) @j_yzdx T V1 gy
dx 9,2
e —tan x — sin x
€ y=Hnxr = sx
dy cosxcosx —sing(—sinyg)
dx - COSzx = SeC<x.

Differential Coefficient of a Function of a Function.

The expression :
y =asin% + bsinx +¢
in which a, b, ¢ are constant quantities, is a function of sin x,
sin % is itself a function of x.
Thus, y is a function of a function of x.

We proceed to determine the differential coefficient % in this

complex case.

Before attacking the general problem we will consider a
special case. *e

Let y = log sin x.
and write z = sin x.



