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Introduction

An affine plane A is called a translation plane if the translation group of A
operates transitively on the point set of .A. The fundamental results on trans-
lation planes were obtained by André in 1954. The translation group of A is
isomorphic to the additive group of a vector space V over a skewfield, and the
points of A can be identified with the elements of V' in such a way that the lines
of A are cosets of subspaces of V. The lines through the origin form a spread B
of V, i.e. any two elements of B are complementary and the elements of B cover
V. Hence, translation planes can be investigated using tools from linear algebra
and projective geometry.

Primarily, we will be concerned with spreads of a 4-dimensional vector space.
Equivalently, we can study systems of lines of a 3-dimensional projective space
which are mutually disjoint and cover the space. These are also called spreads.
First, we investigate spreads of 3-dimensional projective spaces over arbitrary
skewfields. In later chapters we restrict our attention to topological spreads of
real and complex projective spaces, for which our methods work especially well.

The first chapter contains an introduction to the theory of translation
planes. We assume that the reader knows the basic facts about projective and af-
fine planes. For arbitrary projective planes, the relevant definitions and theorems
are given without proof. However, all results dealing directly with translation
planes are proved explicitly.

Furthermore, we give a brief account of the theory of topological translation
planes.

In the second chapter we discuss several possibilities for the description of
spreads of 3-dimensional projective spaces.

Let B be a spread of a 3-dimensional projective space P and choose a line
S € B. Let E;, E3 be distinct planes of P both of which contain S and let p
be a point of P which is not contained in the union of F; and E,. The affine
plane obtained from E; by deleting the line S is denoted by E]. With each line
G € B\ {S} we associate the point G N E; and the image of the point G N E;
under the projection from E to E; with center p. Since B is a spread, this
defines a bijective mapping f : Ef — E{. We show that the mappings obtained
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in this way are generalizations of the transversal mappings invented by Ostrom
for the description of spreads of finite projective spaces. If B is a dual spread
instead of a spread, i.e. if every plane of P contains precisely one element of B,
then the same construction yields a mapping which is defined only on a subset
of Ei. It turns out that these mappings generalize the transversal mappings
introduced by Betten for the study of topological spreads of the 3-dimensional
real projective space. In order to distinguish them from the transversal mappings
we call them *-transversal. We show that there exists a bijective correspondence
between the set of all transversal or #-transversal mappings of an affine plane
over a skewfield F' and the set of all spreads of a 3-dimensional projective space
P over F' which contain a fixed line of P.

If the skewfield F' admits an extension skewfield L which has rank 2 as a
right vector space over F', then the affine plane over F' can be identified with
L. Moreover, the graphs of transversal mappings of the affine plane over F
can be viewed as subsets of the affine plane over L. According to Bruen, who
studied this process for finite fields, we call the resulting sets indicator sets. We
prove that a subset J of the affine plane over L is an indicator set if and only
if each line of the affine plane whose slope is contained in F' U {oo} intersects J
in precisely one point.

If F is commutative and L is a separable quadratic extension field of F', then
we can associate an inversive plane X(F', L) with the pair of fields (', L). The
point set of X(F, L) is the projective line L U {oo} and the circles of X(F, L)
are the images of F' U {co} under the group PGLy(L). So the idea suggests
itself to define also indicator sets with respect to other circles of X(F,L). A
natural candidate is the unit circle Ly = {z € L|zZ = 1}, where ~ denotes the
involutorial F-automorphism of L. Indicator sets with respect to the unit circle
are called L;-indicator sets. Using a suitably defined Cayley transformation, we
set up a bijective correspondence between the indicator sets and the L;-indicator
sets of the affine plane over L. If the 4-dimensional F-vector space underlying
P is identified with L x L, then almost all elements of B become graphs of linear
mappings of the 2-dimensional F-vector space L. We show that algebraically L;-
indicator sets lead to the decomposition of these linear mappings into an L-linear
and an L-antilinear part. This is similar to the Wirtinger calculus in complex
analysis, where the real differential of a real differentiable mapping f : C — C
1s decomposed into its complex linear and its complex antilinear part.

In section 2.6 we examine the case F' = R and L = C more closely. We
show that C;-indicator sets in the complex affine plane can also be viewed as
images of spreads of the 3-dimensional real projective space under the kinematic
mapping of Blaschke and Griinwald. This connection is further investigated in
chapter 3.

Since not every commutative field F' admits a separable quadratic extension
field, in section 2.7 we replace the field L by the ring A = A(F) of double numbers
over F'. We introduce A;-indicator sets and we show that every spread of the
4-dimensional F-vector space A? is associated with an A;-indicator set.
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In the third chapter we relate the theory developed in chapter 2 to the
theory of kinematic spaces. Among other things we show that the fundamental
properties of transversal mappings and of L;- and A;-indicator sets can also be
obtained using this theory.

In chapter 4 we study the behaviour of L;- and A;-indicator sets under the
application of linear mappings. Furthermore, we compute the quasifields asso-
ciated with an L;- or A;j-indicator set and we investigate the relation between
algebraic properties of an Li- or Aj-indicator set and geometric properties of
the corresponding translation plane. In particular, we characterize the L;- and
Aj-indicator sets which lead to pappian planes and planes of Lenz type V.

In section 4.4 spreads covered by reguli are investigated. We introduce
parabolic and hyperbolic flocks of reguli. Then we show that a spread B contains
a parabolic or hyperbolic flock of reguli if and only if the collineation group of
the translation plane associated with B contains a subgroup acting in a certain
special way on B. This generalizes results which were obtained by Gevaert and
Johnson for finite projective spaces.

Let S be a line of a 3-dimensional projective space P over a field F. It
follows from the theory of L;- and A;-indicator sets that the reguli of P which
contain S can be naturally identified with certain lines of a 4-dimensional affine
space over F. Using this identification, we show that if a spread B is covered by
reguli all of which contain S, then B contains either a hyperbolic or a parabolic
flock of reguli. As a corollary, it follows that the translation plane associated
with B is pappian if and only if for each Z, W € B there exists a regulus R of P
with Z,W € R and R C B.

In chapter 5 we study topological spreads of a 4-dimensional real vector
space using C;-indicator sets. We show that every Cj-indicator set is the graph
of a contraction ¢ : C — C which in addition satisfies a condition at infinity.
Furthermore, we derive necessary and sufficient conditions for the existence of
parabolic or hyperbolic flocks of reguli in topological spreads. In particular, we
prove that a topological spread B of a 4-dimensional real vector space contains a
parabolic flock of reguli if and only if the corresponding translation plane admits
a 1-dimensional group of shears.

The locally compact 4-dimensional translation planes with an at least 7-
dimensional collineation group were determined by Betten. Using the method
of C;-indicator sets we derive simplified descriptions for some of these planes.

In chapter 6 we classify the locally compact planes of Lenz type V whose
kernel is isomorphic to C. Planes of this type are associated with topological
spreads of a 4-dimensional complex vector space. We describe these planes us-
ing the double numbers over C. This enables us to show that each of these
planes can be obtained from two complex 2 x 2-matrices B and C' which satisfy
the condition |m!Bm| < |[m!Cm*| for all m € C?\ {0}, where * denotes com-
ponentwise complex conjugation. It turns out that there exist two families of
planes, which depend on either 1 or 3 real parameters. The 1-parameter family
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contains the planes over the division algebras of Rees; their collineation group
is 17-dimensional. The 3-parameter family contains a 1-parameter subfamily
of planes with an 18-dimensional collineation group and a 2-parameter subfam-
ily with a 16-dimensional collineation group. The other planes of this family
have a 15-dimensional collineation group. Up to now, only the locally compact
8-dimensional translation planes with an at least 17-dimensional collineation
group had been classified by Hahl.

In chapter 7 we investigate topological spreads of 8- and 16-dimensional
real vector spaces. Generalizing the results of chapter 5 we show that with
every contraction of one of the normed real division algebras H or @ which in
addition satisfies a condition at infinity one can associate a topological spread
of the real vector space H? or O?, respectively. In contrast to the 4-dimensional
case, not all topological spreads of these vector spaces can be obtained in this
way. The locally compact 16-dimensional translation planes with an at least
38-dimensional collineation group were determined by Hahl. It turns out that
these planes can be obtained from contractions of @ which depend only on the
real part or only on the absolute value of their argument.



1. Foundations

1.1 Translation Planes and Spreads

In this first section we give a comprehensive introduction to the theory of trans-
lation planes. For more detailed accounts the reader is referred to the original
paper by André [1], or to the books by Liineburg [74], Pickert [84] and Hughes-
Piper [61].

We assume that the reader is familiar with the fundamentals of the theory
of projective and affine planes. We shall use the following notation. P = (P, L)
is a projective plane with point set P and line set £. The line joining two distinct
points p, ¢ € P is denoted by pV ¢. Dually, the intersection point of two distinct
lines L, M € L is denoted by L A M. The collineation group of P is denoted by
¥ = X(P). For p € P the group of all collineations of P with center p is defined
by

Tp)={c€X|o(M) =M for all M € L with p€ M}.

Dually, for L € £ the group of all collineations with axis L is defined by
Yy ={oc€X|o(q) =qforall g€ P with g € L}.

Furthermore, we put
Zip,z) = pp) N Zpz)
for pe P and L € L. A collineation o has a center if and only if it has an axis.
If the center is on the axis o is called an elation; otherwise o is a homology.
The center and the axis of a non-identity central-axial collineation are unique.
A central-axial collineation ¢ € X, ) is determined by the image of one point
of P which is not on L and different from p.
" If o € T is a collineation of P, then Zpr)’ = aE[p,L]a‘l = Zlo(p),o(r)) for
allpe Pand L € L. For all M, L € L the set Xjar,1) = Upem Zpp,] 18 a group.
The group Xy, 1) is called a (linearly) transitive group of central-azial collin-

eations if X, 1) acts transitively on the point sets M \ {p, LAM}, where M € £
is a line incident with p. If X, ) is linearly transitive we also say that the plane
P is (p, L)-transitive. The Lenz-Barlotti figure of P is defined by

LBF(P) = {(p,L) € P x L|P is (p, L) — transitive}.
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Three points of P form a proper triangle if they are distinct and non-
collinear. The point p € P is a center of the two proper triangles pi,p2,ps
and qi, qs, g3 if the lines p; V ¢; contain the point p for 7 = 1,...,3. Dually,
L € L is an axis of the proper triangles p;, p2, p3 and qi, g2, ¢3 if the points r; =
(pj Vor) A(g; V qi) are contained in L for {4, j,k} = {1,2,3}. Let pe P,L € L.
We say that P is (p, L)-desarguesian if the following holds. Let pi,p2, ps and
q1, 92, q3 be proper triangles with center p and assume that 71,7, € L. Then also
r3 € L, i.e. L is an axis of the triangles.

The plane P is (p, L)-transitive if and only if it is (p, L)-desarguesian.

If LBF(P) = Px L, i.e. P is (p, L)-desarguesian for all (p, L) € P x L, then
P is called desarguesian. The desarguesian planes are prec1sely the planes over
skewfields.

If LBF(P) = {(p,L) € P x L|p € L}, then P is called a Moufang plane.

The plane P is called pappian if the following holds. Let pi,p2,ps and
q1,92,93 be triples of collinear points and put r; = (p; V qx) A (g; V pi) for
{i,7,k} = {1,2,3}. Then the points ry,rs,r3 are collinear. The Theorem of
Hessenberg says that every pappian plane is also desarguesian. Moreover, the
pappian planes are precisely the planes over commutative fields.

Since we are usually dealing with affine planes, the following conventions
turn out to be convenient. If W is a line of an affine plane A = (P, L), then
w denotes the improper point of W, i.e. W U {w} is a line of the projective
extension of A. The improper line of A is denoted Lo,. The elements of Xz )
are called dilatations of A and the dilatations whose center is on Lo, are called
translations. The elations of .4 whose center is on L., but whose axis is different
from L., are called shears of A.

DEFINITION 1.1. Let A = (P, £) be an affine plane. A is called a translation
plane if the translation group of A operates transitively on P.

Since a translation is determined by the image of one point, in fact the
action is regular.

A projective plane P = (P, L) is called a translation plane if there exists
a line L € £ such that the affine plane obtained from P by deleting L is a
translation plane. This is equivalent to {(p, L) |p € L} C LBF(P).

LEMMA 1.2. LetP = (P, L) be a projective plane, and letp,q € P and L, M € L
such that p € M and q € L. Assume moreover that p # q or L # M. Then the
groups Xpp 1] and X u centralize each other.

Proof. Since p # q or L # M we have X, 11 N Xg p) = {1}. Let o € X, 1) and
T € Zig,M]- Then 07! € Bpr(p), (L)) = Zpp,r) since 7(p) = p and (L) = L.
Hence ror~ 10~ € I, 1. Exchanging the roles of o and 7 we get oro~ 771 €
Y(g,m) and hence (cro~ 7 1)~ = ror~o™! € By £) N Dy a) = {1} O

COROLLARY 1.3. The translation group of a translation plane is abelian.
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Proof. Let 0,7 € E1z r..] \ {1} be translations of A. If o and 7 have different
centers they commute by Lemma 1.2. So we may assume that ¢ and 7 have the
same center p € Loo. Let ¢ € Loo \ {p} and 6§ € Ty £} \ {1}, then the center
of 76 is different from p and ¢. Thus o(76) = (76)0 = 706 by Lemma 1.2 and
hence o7 = 10. O

DEFINITION 1.4. Let F be a skewfield and let V be a vector space over F. A
collection B of subspaces of V with |B| > 3 is called a partial spread of V if the
following condition is satisfied:

(P1) For any two different elements Uy, Us € B we have V = U; @ U,.
A partial spread is called a spread of V if it also satisfies

(P2) Every vector z € V '\ {0} is contained in an element of B.

If B is a spread, the element of B whose existence is required by (P2) is

uniquely determined by (P1).
The elements of a spread B are also called the components of B.

THEOREM 1.5. Let B be a spread of a vector space V over a skewfield F'. Put
P=Vand L = {U+z|U € Bz € V}. Then A = AB) = (P,L) is a
translation plane. The translation group of A is isomorphic to (V,+).

Proof. We show first that A is an affine plane. Since |F| > 2 and |B| > 3 every
line of A contains at least 2 points and every point of A is on at least 3 lines.
Let z,y € V be distinct points of A. Then there exists precisely one element
U € Bsuch that z —y € U. Thus U + x = U + y € L is the unique line of A
connecting x and y. Let € V and U +y € L. The lines through z are precisely
the sets W + z, W € B. Such a line is parallel to U + y if and only if U = W
since otherwise U +W = V. So there is a unique line through z which is parallel
to U + y. Hence A is an affine plane.

Obviously, the set {ry, : V — V : z — z + y|y € V} is a transitive
translation group of A, and this group is isomorphic to (V, +). O

It was proved by André [1] that the converse of Theorem 1.5 is also true,
i.e. every translation plane can be obtained from a spread of a suitable vector
space. '

Let A = (P, £) be a translation plane. Since the translation group Xz L)
is abelian, it will be written additively.

LEMMA 1.6. Let p,q € Lo be distinct points. Then Xjp_ 1] = Zp,r.] +
Y(q,Lo) and the sum is direct.

Proof. As Xpp 1.1 N Xpg L] = {0} the sum is certainly direct. Since the action
of iz, L) on P is regular, it is sufficient to show that X, 1) + X[g,L..] acts
transitively on P. Let ¢,y € P. Put z = (z Vp) A(yV ¢). Then there are
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0 € Xpp,r.) and T € X L] such that o(z) = z and 7(z) = y. Consequently,
(r+ o)(z) = y, and hence pp 1] + Z(y,..] Is transitive on P. O

We are now in position to prove André’s representation theorem for trans-
lation planes.

THEOREM 1.7. Let A = (P,L) be a translation plane. Put V = X[ 1]
and B = {Zp,0..]|p € Loo}. Let the kernel of A be defined by K(A) = {6 €
End(V)|6(U) C Ufor all U € B}, where End(V) denotes the endomorphism
ring of V. Then K(A) is a skewfield, V is a left vector space over K(A) and B
1s a spread of V. Moreover, the translation planes A(B) and A are isomorphic.

Proof. We show first that K(A) is a ring. Let 7,6 € K(A) and let U € B. Then
(Y=8)U)Cy(U)+6(U)CU+UCU and (yob)(U) =(8(V)) CYU)CU.
This shows that K(A) is a subring of End(V) and hence is a ring. Also, V'
naturally is a left module over K(A) and the elements of B are K (.A)-submodules
of V. Although we do not yet know that K (A) is a skewfield, we can construct
the incidence structure .A(B) as in Theorem 1.5. From Lemma 1.6 we infer that
B satisfies (P1) and since every translation has a center on Lo, condition (P2)
is satisfied as well. Let p € P and define o : V — P by o(7) = 7(p). Then o is
bijective since V is sharply transitive on P. Moreover, o induces an isomorphism
between A(B) and A, as is easily seen. Hence A(B) is an affine plane.

So it remains to show that K(A) is a skewfield.

Let § € K(A)\{0}, where 0 denotes the zero endomorphism. Assume that 6
is not injective. Then there exists z € V' \ {0} such that §(z) = 0. Let U € B be
the component with z € B. Let y € V \ U and let W and Z denote the unique
elements of B for which y € W and y+ ¢ € Z. Then W and Z are distinct
and since 8(y) = 6(y +z) € 6(W)Né(Z) C WNZ = {0}, we get 6(y) = 0.
Applying this argument once more we conlude that § is the zero endomorphism,
contradicting our assumption. Hence § is injective.

We show next that 6 is also surjective. Let z € V' \ {0} and let U € B
with z € U. Choose y € V\ U and let W € B with y € W. Then 6(y) # «
and hence there is a unique Z € B with §(y) — « € Z. Since .A(B) is an affine
plane and U # Z, there exists z € (Z +y) NU. This implies z — y € Z and
hence 6(z) — é6(y) € Z. As 6(y) —z € Z and Z is a subgroup of V' we thus get
8(z) — z € Z. On the other hand, we have z € U and hence 6(z) € U. It follows
that 8(z) —z € UN Z = {0} and hence § is surjective.

Let U € B, then §~1(U) = 6~1(8(U)) = U. Thus 6! € K(A) and K(A) is
a skewfield.

By definition of K(.A), the elements of B are K (.A)-subspaces of V', hence
B is a spread of V. O

Since we let our mappings operate from the left on their arguments, the
translation group of a translation plane A naturally becomes a left vector space
over the kernel of A. It is also possible to use a right vector space for the
representation of A. To this end we replace the skewfield (K(A),+,-) by its
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opposite skewfield (m), +,7), where a+b = a+band a'b = b-a for a,b € K(A).
Every left vector space V over K(.A) becomes a right vector space over I/(-(\.;i/)
if we define z'c = c¢-z for z € V,c € E(.»T) = K(A). The subspaces of the
left K (A)-vector space V coincide with the subspaces of the right I?(\./T)-vector
space V. Hence, B is also a spread of the right m-vector space V.

DEFINITION 1.8. Let A be a translation plane and let F' be a skewfield. We
say that A admits a representation over F' if there exists a vector space V over
F and a spread B of V such that A is isomorphic to A(B).

PROPOSITION 1.9. Let A be a translation plane and let F' be a skewfield. Then A
admits a representation over F if and only if F is isomorphic or antiisomorphic
to a subskewfield of K(A). More precisely: A admits a representation in a left
(right) vector space over F' if and only if F' is isomorphic (antiisomorphic) to a
subskewfield of K(A). In particular, K(A) and K(A) are the largest skewfields
over which A admitls a representation.

Proof. Let F' be a subskewfield of K(.A). Since every left vector space over K(A)
also is a left vector space over F', the translation plane .4 admits a representation
over F' and hence also over any skewfield isomorphic to . A similar argument

applies to subskewfields of K (A).

Assume now that A4 admits a representation over a skewfield F'. Let V be
a vector space over F' and let B be a spread of V such that 4 is isomorphic to
A(B).

If V is a left vector space we define K/ = {§. : V — V : 2z +— cz|c € F}.
Then F’ is a subskewfield of K(A(B)) which is isomorphic to F. Hence K(A)
contains a subskewfield which is isomorphic to F'.

If V is a right vector space we define instead K/ = {6, : V =V : 2 —
zc|c € F}. Then F' is a subskewfield of K(A(B)) which is antiisomorphic to
F. Hence K(A) contains a subskewfield which is antiisomorphic to F'.

If K(A) is a field, the distinction between left and right vector spaces van-
ishes. By Wedderburn’s theorem, cf. e.g. [62: p.453], every finite skewfield is
commutative, hence the kernel of a finite translation plane is a field. The same
holds for locally compact connected translation planes with the exception of the
quaternion plane, cf. Proposition 1.29.

Let P be the projective space associated with the vector space V and let B

be a spread of V. Viewed projectively, B has the following properties:

(S1) Any two distinct subspaces Uy, Us € B intersect trivially and span P.
(S2) Every point of P is contained in an element of B.

A system of subspaces of P satisfying (S1) and (S2) will be called a spread
of the projective space P.
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1.2 Quasifields and Spread Sets

Let B be a spread of the F-vector space V and let W, S € B be distinct. Then
V is the direct sum of W and S and for every U € B\ {S} we have UNS = {0}.
Hence, every component U € B\ {S} is the graph of a linear mapping A\y : W —
S. In particular, Aw is the zero mapping. It follows easily from (P1) and (P2)
that the set M = {Ay : W — S|U € B\ {S}} has the following characteristic
properties:

(L1) For all U, Z € B\ {S} with U # Z the mapping Ay — Az is bijective.

(L2) For all z € W \ {0} the mapping g, : B\ {S} — S : U — Ay(z) is
surjective. ‘

Since the vector spaces W and S are isomorphic, they usually are identified.
This motivates the following

DEFINITION 1.10. Let X be a vector space over a skewfield F'. A collection
of linear mappings M C Endp(X) is called a spread set of X if the following
conditions are satisfied:

(M1) For any two distinct elements A1, s € M the mapping A; — Ay is
bijective.
(M2) For all z € X \ {0} the mapping g, : M — X : XA — A(x) is surjective.

It follows from (M1) that the mappings g, considered in (M2) are injective
for z € X \ {0}. Hence, if (M2) is satisfied, they are even bijective.

Actually, it is sufficient to require that X is an abelian group instead of a
vector space and that M C End(X) satisfies (M1) and (M2). It then follows
from Theorem 1.7 that X is a vector space over a suitable skewfield and that
the elements of M are linear mappings.

ProPOSITION 1.11. Let X # {0} be a vector space over a skewfield F' and
let M C Endp(X) be a spread set of X. Put V = X x X and S = {0} x X.
For A € M let Uy = {(z,\(z)) |z € X} denote the graph of \. Then B(M) =
{S}U {Ur| X € M} is a spread of V. Conversely, every spread B of V with
S € B is obtained from a spread set of X in the way just described.

Proof. Let M be a spread set of X and define B as in the proposition.
Let A,xp € M be distinct. We have to show that V = Uy @ U,. Let
(w, z) € V. Then we have

(w,2) = (z,Mz)) + (v, #(¥))
= (z+y,Mz) + p(y))
= (w,Mz) + p(w — 7))
= (w, Mz) — p(z) + p(w)).
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Since A — p is bijective, this equation has a unique solution z € X. So y € X is
determined uniquely as well and hence V = Uy @ U,,.

Let (w,z) € V\{(0,0)}. If w = 0 then (w,2) € S. So assume w # 0. We
need to find A € M such that (w, z) € Ux. The equation

(w,2) = (2,M(2)) = (w, A(w)) = (v, 20 (}))

has a solution A € M since gy, is surjective. So (w, z) is contained in an element
of B and hence B is a spread of V.

Assume now that B is a spread of V with S € B. Let U € B\ {S}. Since
V=XxXand UNS = {(0,0)}, there exists a linear mapping A : X — X
such that U = Uy. By reversing the arguments given above it is easily seen that
M ={X € Endr(X)|Ux € B\ {S}} is a spread set of X, and obviously we have
B(M) =B. O

It follows from elementary linear algebra that if a vector space V' contains a
spread B then there exists a vector space X such that V' can be identified with
X x X and S = {0} x X € B. Hence, every spread can be obtained from a
suitable spread set.

DEFINITION 1.12. Let @ be a set equipped with two binary operations +,0 :
Q xQ — Q. For a € Q we define the mappings Ag,04 : @ — @ by As(z) = aoz
and g4(z) = z o a, respectively. Then (Q,+,0) is called a right quasifield if the
following axioms are satisfied:

(Q1) (@, +) is an abelian group.

(Q2) zo0=0o0z=0forall z € Q.

(Q3) There exists an element 1 € @ \ {0} such that loz =z o1 =z for all
z € Q.

(Q4) For all m,z,y € Q we have (z+y)om=zom+yom.

(Q5) For all m,n € Q with m # n the mapping om —0n : Q — Q : z —
z om — z on is bijective.

(Q6) For all z € Q\ {0} the mapping A, : Q — Q : m — z o m is surjective.

The kernel of Q is defined by K(Q) = {k € Q|ko(z+y) =koz+ko
yand ko(zoy) =(koz)oy forall z,y € Q}.

The axioms for a left quasifield are obtained from (Q1) - (Q6) by exchanging
the factors in all products that appear.

It follows from (Q5) that the mappings A, are injective for z € Q \ {0}.
Hence, they are even bijective if (Q6) is satisfied.

LEMMA 1.13. Let Q be a right quasifield with kernel K(Q). Then K(Q) is
a skewfield and Q is a left vector space over K(Q). Moreover, the mappings
om :Q — Q :z— zom are linear over K(Q) for allm € Q.
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Proof. Let k,l,z € Q with k+ 1 =0. Then we have koz +loz = (k+{)oz =
0oz =0. It follows that —(k o z) = (—k) o z.
Let k,l € K(Q) and z,y € Q. Then we have

(k—Do(z+y)=ko(z+y)—lo(z+y)
=koz+koy—loz—loy
=(k—-Doz+(k—1)oy.

Also we have
(k—lo(zoy)=ko(zoy)—lo(zoy)
=(koz)oy—(loz)oy
=(koz—loz)oy.
=((k=0loz)oy.
This shows (k — 1) € K(Q). By a similar argument, also kol € K(Q).

Let z,y € Q. From (Q3) we infer that lo(z+y) =z+y=(loz)+(loy)
and lo(zoy)=zoy=(loz)oy. It follows that 1 € K(Q).

By definition of K(Q), the multiplication of @ restricted to K(Q) is as-
sociative, Moreover, K(Q) satisfies both distributive laws. Hence, K(Q) is a
ring.

Let k € K(Q) \ {0}. By (Q6) there exists | € @ such that kol = 1. Let
z,y € Q. Then we get

ko(lo(zoy))=(kol)o(zoy)=(zoy)
=((kol)oz)oy=(ko(loz))oy=ko((loz)oy).

It follows that lo(zoy) = (loz)oy. By asimilar argument also lo(z+y) = loz+loy
and hence | € K(Q). Thus K(Q) is a skewfield.

It follows from the definition of K(Q) that @ is a left vector space over
K(Q).

From (Q4) we infer that the mappings om : Q — @ : £ — z om are additive
for allm € Q. Let z,m € Q and k € K(Q). Then we have

om(koz)=(koz)om=ko(zom)=kopgy,(z).

Hende gy, is linear for all m € Q. O

PROPOSITION 1.14. Let Q be a right quasifield and define M = M(Q) =
{om : Q — Q|m € Q}. Then M is a spread set of the K(Q)-vector space Q.
Let A = A(Q) = A(B(M(Q))) denote the translation plane associated with the
spread B(M(Q)). Then we have K(A) = {& : Q* — Q% : (z,y) — (koz,ko
y) |k € K(Q)}. In particular, the skewfields K(Q) and K(A) are isomorphic.

Proof. By Lemma 1.13, the elements of M are linear mappings of the left K(Q)-

vector space Q.
Obviously, (Q5) is equivalent to (M1) and (Q6) is equivalent to (M2). Hence
M is a spread set.



