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Abstract

Let X be a finite group. Denote by O(X) its maximal normal sub-
group of odd order. A 2-component of X 1is a perfect subnormal subgroup
L of X such that L/O(L) 1is quasisimple. The principal result of this
paper is to classify groups G with a unique 2-component L(G) for which
O(CG(E)) ¢ 0(G) for some elementary 2-subgroup E. A corollary of this
result is that the 2-components of the centralizer of an involution in any
finite group G with O(G) = 1 are quasisimple (which is the B-Conjec-
ture). The classification first obtains a characterization of quasisimple
groups G such that CG(u) has a 2-component L for some involution u

for which L/O(L) 1is a Chevelley group over a field of odd characteris-
tic. This characterization is based on Michael Aschbacher's characteriz-
ation of Chevalley groups. Having obtained this, the bulk of the argument
proceeds with an analysis of the situation when the centralizers of involu-
tions have centralizers with 2-components of different types.
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PART I

CHARACTERIZATION OF CHEVALLEY GROUPS AND OTHER LOCALLY

E£-UNBALANCED GROUPS

0. Introduction. A perfect group L such that L/Z(L) 1is simple is
said to be quasisimple. Designate by O(X) the maximal normal subgroup of
odd order of a group X. A 2-component of X 1is a perfect subnormal sub-
group L such that L/O(L) 1is quasisimple. If O(L) =1, L is said to
be a component of X. Let A be a set of quasisimple groups. A 2-com-
ponent L with the property that L/O(L) = Xa/O(Xa) for some Xa € X is
said to have type %. Denote by ¥(X) the set of 2-components of a group
X, and set L(X) = <L|L € ¢(X)>. Let $(G) and &(G) respectively de-
note the set of involutions and the set of nontrivial elementary subgroups

of a group G. Set

(0.1) £(2(G))
(0.2) £(8(G))

U{£(Cq(t)) | t € 2(G)),
U{£(C4(E)) | E € &(G)}.

The following statement has singled out an important step in the

classification of simple finite groups.

B-CONJECTURE. The elements of ¥($(G/0(G)) are quasisimple for any

finite group G.

A proof of this statement will be presented in this monograph. This result
plays a key role in the characterization of simple finite groups G by
providing the first step in the analysis of the centralizers of involutions
of Aut(G).

Let L be a 2-component of a group X and set ﬁL = Autx(L/O(L)) =
Nx(L)/Cx(L/O(L)). We say that L 1is locally balanced [locally &-bal-

anced] if O(CN(t)) =1 for all t € Q(NX(L)) [O(Cﬁ(E)) =1 for all
L L

E € E(NX(L))]. It is a consequence of Proposition 2 of [33] that O(CG(t))
determines a signalizer functor if the elements of ¢($(G)) are locally

balanced for a finite group G. It then follows from Aschbacher's classi-
fication [1] of groups with a proper 2-generated core that O(CG(t)) C 0(G)

for all t € #(G) or tnat the maximal rank of an element of §£(G) is 3.

Received by the editors April 23, 1980 and in revised form July 17, 1983.
Supported in part by the National Science Foundation.



2 JOHN H. WALTER

In this case, results of Gorenstein and Harada [29] provide a classifica-
tion of the elements of ¥(G) which verifies the B-Conjecture. The prin-
cipal result of this work is Theorem I which provides a characterization of
groups with locally &-unbalanced components. This provides a proof of the
B-Conjecture since this condition can then be seen to hold in all groups G
in which ¥%(#(G)) contains locally unbalanced elements.

To describe the types of these 2-components, we use a standard nota-
tion for the classical (cf. [28]), alternating and sporadic groups (cf.

[28]). When a simple group of type X has a unique perfect central exten-

sion with center of order 2, we denote this extension by i. In addi-
tion, denote by TL(3,4) any perfect central extension of SL(3,4) by a
2-group. Denote by Chev(p) the set of quasisimple groups Chevalley groups
and their twisted analogues defined over a field of characteristic p.
Exceptional and twisted exceptional Chevalley groups will be denoted by a

standard notation (cf. [13]). By Chev*(p). we designate the set Chev(p)

with the groups PSL(2.pn) omitted when p > 3. When p = 3, we exclude

PSL(3,3), PSU(3.3). 2G,(3%2™*!y, ¢,(3). PSL(4.3). PSp(4.3). and PSU(4.3).

The types of locally unbalanced 2-components in ¢(#(G)) for a group

G fall into three classes:

(0.3) %a = {PSL(2,q), q odd; TL(3.4), He},
(0.4) B = {An.Kn, n odd, n 2 T}.
(0.5) B, = {Chev*(p)., p odd}.

Set 3 =% U% U% . Set
a b c
@0 = % U {My;2. My», Ja., J2. HS, HS, Sz, Sz, ON, Co,,
2n+1
Ly. %6,(3°"")}.

The principal result of this work is the following.

THEOREM 1. Let G be a finite group with a unique 2-component L(G)
Suppose O(CG(E)) g€ 0(G) for some E € §(G). Then L(G) has type %o.

COROLLARY. The B-Conjecture holds.

Let G be a minimal counterexample to Theorem I. It follows that
L(G) 1is simple, CG(L(G)) = 1, the locally &-unbalanced elements of
2(&(G)) have type @0, and the B-Conjecture holds in proper sections of G.
The contradiction is obtained by applying various characterization theorems
to G. This paper is divided into two parts. Part II is more complex than
Part I and provides the establishment of the B-Conjecture for the group G.
Part I provides the characterization of G wunder this condition, which

immediately lead to a standard element in £(#(G)) by virtue of Aschbacher’s
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Component Theorem [2]: many of these results are of interest in themselves
independently of the role they play in the establishment of the B-Conjec-
ture. It is a consequence of the induction hypothesis on G that the stan-
dard subgroup has type € where the class € contains %0 (cf. (0.7)).
But also in Part I a characterization of L{(G) 1is obtained when <($(G))
has an element of type Chev®(p). and this characterization is carried out
without the use of the B-Conjecture except for four types listed in (0.7).
This result allows us to restrict the locally &-unbalanced elements in
2(&(G)) in Part II. The introduction to Part II contains a more complete
analysis of the strategy of this proof. But the essential idea is to obtain
the B-Conjecture in such a form that the reduction to the analysis of
groups with standard subgroups is as direct as possible.

We now state more precisely the main theorems which are proved in this
1

work. First set

(0.7) € = € U {J,. Js. Coy. Co,. Mc, Fs., Chev(3), SL(2.4").
PSL(3,2"), PSU(3.4). PSL(4,2"), sp(4.4"). PSL(5.2"),
SU(5.2). G2(2"). G2(4). n 2 1: Ay . n > 4).

The following theorem provides the final step in characterization of a
minimal counterexample to Theorem This theorem is proved in Part I by
the consideration of a succession of standard subgroup problems. In the
second section of Part I, we present a characte This theorem is proved
in Part I by the consideration of a succession of standard subgroup
problems. In the second section of Part I, we present a characterization
of L(G) when ¥(#(G)) contains an element L of type

This theorem is proved in Part I by the consideration of a succession
of standard subgroup problems. In the second section of Part I, we present
a characterization of L(G) when ¢(#(G)) contains an element L of type
PSL(2.q) or A; in a form needed for Part II. This argument relies on [43]
for the case where |L|, = 8. The cases where ¥£(#(G)) contains a stan-
dard element of type He, ON, Co,;, and Fg are treated in §3. These follow
from Corollary 3.3 of Part I which gives a short uniform treatment based on
Theorem 3.2, which has an immediate and direct application to a variety of
other standard subgroup problems that are irrelevant to this paper. The

remaining cases with standard components of sporadic type where our ori-

1 : ; : " "
In a previous version of this paper, we did not include the elements

G,(3), SL(3,3), SU(3.,3), C2(2n). G,(4). Co,, and Co, 1in the class € be-
cause we used a proof of Theorem 3.4 which did not require the inclusion of
these groups. But now the argument is based on a paper of Michael Aschbach-
er [5]. which uses this larger class of groups and deals with this question
more effectively at the expense of considering more standard form problems.
As a result, it is necessary to quote a larger number of characterization
theorems, but these must be considered in the general problem of the classi-
fication of finite simple groups in any event.
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ginal arguments showed no advantage over the present literature are now
treated by quoting that literature.

The case where some member of ¢(#(G)) has type Chev*(p) is consi-
dered in the last section of Part I and is the most important result in
Part I. Here we obtain a characterization of L(G) when ¥%(#(G)) has an

element of type Chev*(p). The argument is based on Michael Aschbacher’s

characterization [2] of (LG> in groups G where L 1is an intrinsic
element of ¥($(G)) of type SL(2,q), q > 3; a 2-component of CG(t).
t € $(G), 1is called intrinsic if t € L. The B-Conjecture is not required

for this argument except for the case where the elements of ¢(#(G)) of

type Chev*(p) have type 9 Hhire®
(0.8) 9 = {PSL(4.3). PSU(4.3). R7(6.3). 0(7.3). 27(8.3). PR*(8.3)).

The class 9 has to be considered because in the characterization of groups
of type Chev*™(3), there exists groups G with an intrinsic element in
2(#(G)) of type 27(6.,3) but no intrinsic element of type SL(2.q).

For a group X, set

(0.9) $(X) = (i€ x]i%ez(x).
(0.10) 2($(X)) = U(L(Cg(d) ]I € #(X)).

The precise result which we establish is the following theorem.

THEOREM III. Let G be a finite group with L(G) quasisimple.
Assume that the B-Conjecture is satisfied in each proper section of G,
that Theorem II holds in proper sections of GsZ(G), and that <(#(G))
contains an element of type Chev™(p) for some odd prime p. Then either
L(G) has type Chev™(p) or one of the following holds.

(i) L(G) 1is not simple and the elements of ¥($(G)) of type

Chev*(p) have type SL(2,q), @ = 5,7 or 9 and L(G) has type An, n odd,

TL(3,4), or ;n' n even, according as gq = 5,7 or 9, respectively.

(ii) L(G) 1is simple and the elements of ¥($(G)) of type Chev™(p)
have type 9 or SL(2,7), but ¥($(G)) contains no intrinsic element of type
SL(2,7).

THEOREM 1V. Assume the B-Conjecture and the conditions of Theorem
III. Then L(G) has type Chev™(3) under condition (ii) of Theorem III.

2Here 2*(2n,q) and Q7 (2n,q) denote the commutator subgroups of the
orthogonal groups O0%(2n,q) and 07 (2n,q) respectively defined over a
vector space of dimension 2n over the finite field Fq of q elements

relative to a quadratic form of Witt index n and n-1. We denote by
1(2n+1,q) the commutator subgroup of the orthogonal group O0(2n+l1),q)
defined on a vector space of dimension 2n+l over Fq
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Theorem III together with the results of Solomon [57] allow us to
assume that the locally &-unbalanced elements of ¥(&(G)) in the proof of

Theorem I have type @: where

(0.11) e {€, \ ({Chev*(p)|p 0dd} U {A, . In < 3} U {Ly})} U

Eo U {SL(2,7)}
and where

(0.12) )

(PSL(4,3), PSU(4.3), 27(6.3). Q27(8.3). PQ*(8.3)}.

The set Eo is the subset of 9 consisting of those types which give rise
to locally &-unbalanced elements of ¥(#(G)) (cf. Proposition 2.11 of Part
II). In Part II, Theorem I is proved by using signalizer functors.

The characterization of Chevalley groups plays a key role in the or-
ganization of this material. At the Sapporo Conference, during a conver-
sation with Michael Aschbacher, it was realized that the inductive approach
of characterizing groups with locally &-unbalanced elements could be made
more effective by utilizing a characteriztion of Chevalley groups based on

Aschbacher's fundamental paper together also with Solomon's characteriza-

tion of groups with elements of ¢(#(G)) of type ;n' These characteriza-

tions are based on a signalizer functor appearing in Aschbacher’'s paper and
consequently do not involve the B-Conjecture. This constructon works well

with intrinsic elements of ¥(#(G)).

The characterization of Chevalley groups appearing in Part I depends
upon reducing the situation to a configuration in the centralizer of an
involution which charaterizes Spin(7,q) when q > 3. The essence of this
argument is given in [66]. Shortly after these ideas were developed, John
Thompson introduced to this problem a variant of this approach which intro-
duced the concept of an unbalanced triple (a,x,J) where J is an element
of Q(Cc(a)) of type Chev*(p) which is <x>-invariant for a € $(G) and
x € E(Cc(a)) and L = [L,O(CL(x)) n CL(a)]O(L). This idea was developed
further by Burgoyne [10]. Then it was followed by Solomon [57], who devel-
oped the idea of a minimal unbalancing triple with Robert Gilman [22].

This is explained in [14]. The present work uses the signalizer functor
method to the maximum extent in order to provide the B-Conjecture. This
simplifies the characterization problems appearing in Part I. A more com-
plete survey of the approach used in this paper and a discussion of its

significance appears in the introduction to Part II.

The author gratefully acknowledges the advice and suggestions given to
him by Michael Aschbacher. His encouragement and interest played an
essential role in completion of this paper. His suggestions in regard to
the material in Part I provided the basis for a substantial simplification
of the argument. This is particularly true for Theorem 3.2 which was

developed from an argument communicated to the author by him.
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1. Preliminary concepts and results. Because the notation and con-
cepts required in Part II are more complex than those required for this
part, we introduce here only what is needed here.

Let X be a finite group. The subgroup L(X) 1is discussed in [33]
and [34] (cf. also Section 3, Part II). In particular, Theorem 3.1 of [33]
asserts that
(1.1) L(CX(T)) C L(X)

for any 2-subgroup T of X. Then L(Cx(T)) = L(C and this

L (M)

implies the following proposition.

PROPOSITION 1.1. Let L1€ Q(Cx(t)) where t € $(X). Then there

exists L2 € $(X) such that Ll = L(CLszt(t)).

Let Ei = Li/O(Li) and denote images by bars for i = 1,2. When
t
Ly # Ly,
whose kernel is contained in Z*(Lz). Suppose that Li € Q(Cx(ti)) where
ty € #(X)., i = 1,2, and that [tl.t2] =1 with [Ll.tz] c O(Ll); set
L12 = L(CL§t2)) so that L, = LI2O(L1). Then write

the mapping x » ;;t induces an epimorphism L2 — L1/0(L1)

(1.2) L, =L, or L lL.L

; _ ty ty -
according as L2 = L2 or L2 # L2 when by Proposition 1.1, L12 =

L(CL2L2t,(t1)). Then L1 is a homomorphic image of L2 when L2t‘ # L2.

Let Li € Q(Cx(ti)) where t; € #(X), i =1,2, [tl.tz] =1, and

[L1/O(L1).t2] = [L2/0(L2).t1] = 1. Set L12 = L(CL§t2)) and L

21

L(cLétl))‘ Suppose that L, = L, and L, < L;,. Then L, = Ly 0(L)-

Then L1 nL, = L21(0(L1) n L2) since L21 c L1 n L2. But L21 < CLgtl)’

2
So L21 = L(L1 n L2). Likewise L12 = L(Ll n L2). Hence L12 = L21. In

this case, we say that L1 and L2 are adjacent. We say that an element
L of ¢(#(X)) 1is equivalent to an element M if there exists a sequence
L = LI'L2""'Ln with Ln = M such that Li is adjacent to Li+1 for

i 1,2,....n-1, and Li € £(2(X)).

Let ¢ be a subset of <¢(#(X)). We say that an element M of ¢

dominates an element L of ¢ in ¢ if there exists a sequence of ele-
ments of ¢
(1.3) L=L,,L,,...,.L =M

with Li € Q(Cx(ti)) ne, ty € $(X), i =1,2,..,n, and [ti'ti+1] =1

and with either Li < Li+1 or Li 1 Li+1Li+li'
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that L € ¥ 1is maximal with respect to domination in ¢ if for every

sequence (1.3) of dominating elements obtained from £, Li is either

t
adjacent to L, ., or L, ! P ST

of quasisimple elements, every element of ¢ of maximal order is maximal

1: 1= 1,2;;::.:0~1s If ¢ consists

with respect to domination in ¢¥. When ¢ = ¢(#(X)). M is said to
dominate L if it dominates L in ¥. A subset ¢ of ¢(#(X)) 1is said
to be closed with respect to domination if the elements of ¢ are
dominated in ¥(#(X)) only by elements of ¢. If no reference to the set
from which the dominating elements are obtained, we mean domination with
respect to ¥(%(G)).

Michael Aschbacher has defined a standard subgroup L of a group X
to be a quasisimple subgroup such that CX(L) is tightly embedded in X,

NX(CX(L)) = NX(L). and [L,Lx] # 1 for all x € X; a subgroup K of X

is defined to be tightly embedded in X if |K N le is odd for all x €
X\ NX(K)' A standard subgroup of CG(t) for some t € #(G) is said to
be a standard element of ¢(#$(X)). Aschbacher’'s Component Theorem [2]

leads to the following result.

PROPOSITION 1.2. Let G be a finite group with L(G) simple and
CG(L(G)) = 1. Let ¢ be a subset of quasisimple elements of ¥($(G))

which is closed with respect to domination such that no element of ¢ is

intrinsic of type SL(2.q), q odd, or 27.

(i) An element of ¢ which is maximal with respect to domination is
standard.

(ii) An element L € ¢ is standard if and only if L € Q(Cc(t)) for
all t € Q(CG(L).

Proof. (i) Let L be an element of ¥ which is maximal with res-
pect to domination. Then L is maximal in the ordering on ¢(#(G)) given
in [2]. Because L(G) 1is not an element of ¢ and because ¥£(%(G))
contains no intrinsic element of type SL(2,q). q odd, or type A;, Condi-
tion (1) of Theorem 1 of [2] holds. We remark that it suffices to assume
that ¢ consists of quasisimple elements rather than ¢(#(G)) consists of
quasisimple elements by the argument of [2].

Now (1) of Theorem 1 of [2] implies that L belongs to Q(CG(t)) for

all t € #(K) where K = CG(L) and that [L,Lx] #1 for x € G. It
remains to show that K 1is tightly embedded in G. Suppose that |k n le
is even for some x € G.. Let t € #(K N Kx). Then L and LX belong to

2(Cy(t)). But by (1) of Theorem 1 of [2], L = L*; so x € Ng(L).

(ii) When L € Q(CG(t)) for all t € f(CG(L)), L 1is clearly maximal
with respect to domination. Hence L 1is standard in ¢(#(G)) by (i). So
suppose that L 1is a standard element of ¢($(G)) and that t € K where
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K = Cg(L). Let x € Cy(t). Them |K N K*| 1is even. So x € No(L).
Hence L « Cc(t). This proves the proposition.

As a first step in determining the structure of CG(L) when L 1is a
standard element of ¢¥(#(G)) for some group G, we note a direct
consequence of the results of Aschbacher and Seitz [7]. which applies to

the cases we will consider.

Let G be a group with L(G) simple and 02:2(G) = 1. Let L be a
standard subgroup of type Chev(p), p odd, or type An. Suppose that CG(L)
has 2-rank at least 2. Then CG(L) is a four group and L = PSL(2,5)
with G = J, or M,, or L = An and G = An+k'

Thus in studying standard subgroups L, we are reduced to the case
where an Sz—subgroup of CG(L) has 2-rank 1. If this subgroup is gener-
alized quaternion, [3] applies to give a characterization of G. To handle
the case where CG(L) has a cyclic 82~subgroup of order at least 4, we
have the following lemma. It is related to a similar result of John Thomp-
son which is stated for a set J of disjoint nonabelian subgroups of a
p-group which is closed under conjugation. Of course, only the case p = 2

has applications here.

LEMMA 1.3. Let J be a family of nonelementary abelian subgroups of

1x €9 for all dis-

tinct TI'TZ € J and x € P. Then the elements of J comnmute.

a p-group P. Assume that Tl n T2 =1 and that T

Proof. We argue by induction on |P|. Let T1 and T2 be distinct
elements of J. Then
.72 - T [T,.T,] and T,T* = T [T..T,]
1 To1t1r 2 2 I A G

"

. P
Thus by induction P = T,.Ty> = T1T2[T1.T2] 1To 9
Then (T?) # P, 1 = 1,2. So by induction T? and Tg are abelian. Hence
[P.P] = [TI'T2] C Z(P). Consequently,

T.T. and 9 = Tf urT

(1.4) [Tf,sz = [Tl,Tg] = [Tl.T2]p.

2
Suppose, say, TT # 1. Then T? is nonelementary. By induction,
P p,\P P P
the lemma applies to the pair (KT 'T2)T (Tl) U T2). So [TI'TZ] = k.

t
1

[Tp.Tz] =1. Thus [T,.T,]CT

Hence [Tl'Tz] c 'I‘1 since T? cCT

P P
T2 # 1, and by (1.4), [Tl.T2]
as desired.

for all t € T2. By hypothesis,

1 n T2 = 1

2
Thus we conclude that T? TP = 1. Then
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2
(1.5) [Tf,rgj [TI.TS ] =1.

N

P
Hence [T .T5] C T, T,. By (1.4), [T;.T9] = [T}.T,1. As
Tl n T2 =1, [Tl'Tg] = [Tp,Tz] = 1. Again this implies [TI'T2] =1 as
desired.

P
and [TI'T2]

COROLLARY 1.4. Let H be a group with a tightly embedded subgroup K

wvhich has a nonelementary abelian Sz-subgroup T. Then the weak closure W

of T 1in an S2-subgroup of H 1is abelian. Furthermore, if Th C W for

h n

some h € H, then T =T for some n € NH(W).

Proof. Apply Lemma 1.3 with P be an Sz—subgroup of H and 97 = TP

in order to obtain the first statement. So suppose Th C W for some

-1
h € H. Then CH(T) 2 (W,Wh >. Hence there exists y € CH(T) such that

-1
Wh Y ¢ P. Then h 1y € NH(W). So we may set n = h_ly to obtain the

last statement.

The sectional 2-rank r(H) of a group H has been defined as
(1.6) r(H) = max{m(X/®(X))| X a 2-subgroup of H}.

LEMMA 1.5. Let H be a finite group with normal subgroup K. Then
(1.7) r(H) < r(H/K) + r(K).

Proof. It suffices to assume that H is a 2-group with m(H/¢(H)) =
r(H) since when Ho C H, r(HO/(Ho N K)) < r(H/K) and r(Ho n K) < r(K).
Then
m(H/®(H)) m(H/K®(H)) + m(K®(H)/$(H))
m(H/K)/K®(H)/K)) + m(K/K N ®(H))
< r{(H/K) + r(K).

In dealing with subgroups of PI'L(2,q) = Aut PSL(2,q). we need some
notation. There exists u € $(PIL(2,q)) which acts on PSL(2,q)) as a
diagonal automorphism, and PGL(2,q) = PSL(2,q)<u>. When q = r?, there
exists t € $(PITL(2.q)) such that t acts as a field automorphism on
PGL(2,q) and CPSL(2,q)(t)
to belong to the same S2—subgroup S of PIrL(2,q). Set So = Cs(t).
Then So is the dihedral S2—subgroup S N PSL(2,q) of PGL(2,r), and
Z(So) = ¢[t,u]>. Set PAL(2,q) = PSL(2.q)<t,u> and P3ZL(2,q) =
PSL(2,q)<t>. A subgroup of PIL(2,q) containing P3L(2.q) but not
PGL(2.,q) will be said to have P3L(2,q)-type. If it contains PAL(2.q),

= PGL(2,r). In this case, choose u and t
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it will be said to have PAL(2,q)-type.

Finally we take note of some definitions used throughout this paper.
We have defined a quasisimple group to be a perfect group L such that
L/Z(L) 1is simple. Define a 2-quasisimple group to be a group L such
that L/O(L) 1is quasisimple. Thus all 2-components are 2-quasisimple. A
semisimple group is a direct product of nonabelian simple groups. A quasi-
semisimple group is a perfect group L such that L/Z(L) 1is semisimple.
A 2-quasisemisimple group is a group L such that L/O(L) is quasisemi-
simple. Thus for any group X, L(X) 1is 2-quasisemisimple when L(X) # 1.
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2. 2-Components of type PSL(2.q) and A;. In this section, we extend
the argument of [66] in order to obtain a characterization of groups in
which ¢(#(G)) contains elements of type PSL(2.q). q odd, or type A,.

The properties of these groups which we use are well-known. We refer the
reader to [31] and to Propositions 2.2 and 2.4 of Part II for more details.
The characterization we need is given in Theorem 2.2 which is obtained from
the following proposition, which is also used in Part II. Set $2(q) =
{PSL(2,q)} and set 22(q)* = £,(q) U {A;}. For t € #(G), designate by
Q(Cc(t);Yz(q)) and Q(Cc(t);iz(q)') the subsets of Y(Cc(t)) consisting
of elements of type 22(q) and §f2(q)"l respectively, and set

2(2(6):25(a)%) = U{L(C,(t):¢,(a)%)| t € #(C)}.

THEOREM 2.1. Let G be a group with L(G) simple and CG(L(G)) = 1
Assume that m(cG(Lt<t>/O(Lt)) = 1 whenever Lt € Q(CG(t));Yz(q)*) for
some t € $(G). Furthermore, when Lt € %(Cc(t);iz(q)) and L(CL(S)) # 1

t

for some s € &(Cc(t)), set Ls = [L(CG(S))’L(CLES))] and assume that L_

is 2-quasisimple of type PSL(2,q) or PSL(2,r) where r? = q. Then L(G)
has type € when 2(9(0));22(q)‘) % 0.

Proof. Take G to be a minmal counterexample, and let Lt be an ele-
ment of £(C.(t)):¥,(q)%) for t € #(G). Then G = L(G)<t>. Let U be
an Sz—subgroup of CG(Lt/O(Lt))‘ By hypothesis, m(Ut) = 1. By virtue of
Aschbacher’'s characterization of Chevalley groups [3], Ut is cyclic. Let
Ut = (ut>. Let St be an Sz-subgroup of Cc(t) containing Ut' Set
Ct Cc(t) and Et = Ct/Uto(Ct)' Denote images in Et by tildes. Then

Ct is isomorphic to a subgroup of Aut Lt' Let Mt be maximal among the

subgroups of Ct which contain a dihedral Sz—subgroup. Then Mt has type

PGL(2,q), PSL(2,q), or A, and M_<a C,. Set S =S, N M_,. Therefore
t t Mt t t

Ut q SMt and SMt/Ut is dihedral. Set SLt = St n Lt’ Then SLt is an
82~subgroup of Lt and SMt = SLtUt<dt> where dt acts on Lt/O(Lt) as

a diagonal outer automorphism when Lt/O(Lt) = PSL(2,q) and d, =1 when

t

Lt/o(Lt) % A;. Then St = SM:50> where s, acts on Lt/o(Lt) as a field

automorphism or as a transposition according as Lt/o(Lt) = PSL(2,q) or A,.

¥hen St # SM 3 ICS (s >(SL )SL :SL | = 2. Thus we may take s, s° that
. t L "o t t t

t

C<S >(SL ) = <s>Ut where s induces an involutory automorphism on

o t .
Lt/O(Lt)' Then s? € Ut' Without loss of generality, we may suppose that
s, has minimal order among the elements in the coset soUt‘ Set <z> =
z(s,) n sLt when |th| >8. If S 3 S“c' then lSLc] > 8 since q is

1]

a square when Lt/O(Lt) = PSL{(2,q): consequently Z(SL ) = <z>. If
t

S, 28y 28§ U, then [s.d ] =2z or tz by the structure of PIL(2.q).
t t
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The first reduction in the proof is to show that

(2.1) U, = <.

Suppose that this is not the case. Since G = L(G)<t> = L(G)Ut' G = L(G).

Let S be an S2—subgroup of G containing St' Let W be the weak clo-

sure of Ut in S. Because Ut is cyclic, CG(Lt<t)/0(Lt)) is tightly

embedded in G, and Ut is normal in every 2-subgroup of CG(t) which
contains it. Corollary 1.4 then implies that W 1is abelian. Therefore
¥V C Cs(t) = St' By the result of Gorenstein and Harada [29], r(G) > 4
since G = L(G) 1is a simple group which does not have type €. Because

r(S,) < I'(SM /Ut) + r(Ut) + 1 <4 by virtue of Lemma 1.5, r(S) > r(St).
t

Hence S # St and <t> 1is not normal in S. Therefore W # Ut and

X
V2 Ut # Ut for x € S\ St.
With this choice of x, we now argue that

(2-2) tx = Z.
Indeed, because CSiSLt) = Ut<s> ('8 Utx and because both SLt and Utx
are normal in St'

X
(2.3) 1 # [SL U] ¢ SL n Ut 3

t t
Thus t* € SL . This implies that the elements of Ut do not induce field
t

automorphisms on Lt. Thus they induce inner automorphisms, and t* is a

square in CS (SL ) = SL Ut<s>. This implies (2.2). Also it follows that
t t t

lSL | > 8 inasmuch as IUtI 2 4.
t

Now (2.2) also implies that ts = {t.z}. So lS:St| = 2. We now
argue that r(S) = 4 by determining the structure of St. Let R =
UtsL (s> and set T = Ut<s>. Let a be an involution in SL distinct

t t
from z. and set S, = Cg (a). Then S_ = <a,z> x T. Let b = z%, and

t
x 5

set S, = cst(b). then S, = <b,t> x TX. As t € (S, ). S, NU = <>
Thus b inverts Ut' But z € TX; so z € Q(Sb). This means either
[b.SL ] =1 or b induces a field automorphism on Lt which central:zes

t

X X

sLt. Thus sLt = <a"| a € y(sLt).a #z> C ngsht) = U, <s,2>.

Replacing s by sz 1if necessary, we may assume that SLx is a dihedral

subgroup of T. As T = Ut(s>. s must invert Ut‘ Then T is a dihedral



