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Introduction

The white noise calculus (or analysis) was launched out by Hida [1] in 1975 with
his lecture notes on generalized Brownian functionals. This new approach toward
an infinite dimensional analysis was deeply motivated by Lévy [1] who considerably
developed functional analysis on L2(0,1) and actually analysis of Brownian function-
als. The root of white noise calculus is to switch a functional of Brownian motion
f(B(t);t € R) with one of white noise ¢(B(t);t € R), where B(t) is a time deriva-
tive of a Brownian motion B(t). Although each Brownian path B({) is not smooth
enough, B(t) is thought of as a generalized stochastic process and ¢ is realized as a
generalized white noise functional in our language. We may thereby regard { B(t)} as
a collection of infinitely many independent random variables and hence a coordinate
system of an infinite dimensional space.

The mathematical framework of the white noise calculus is based upon an infi-
nite dimensional analogue of the Schwartz distribution theory, where the role of the
Lebesgue measure on R" is played by the Gaussian measure x on the dual of a certain
nuclear space E. In the classical case where B(t) is formulated, we take E = S(R)
and the Gaussian measure g on E* defined by the characteristic functional:

2
exp (—%) = /E e y(dr), €€k,

where |£| is the usual L%*norm of £&. Then the Hilbert space (L?) = L*(E*,p) is
canonically isomorphic to the (Boson) Fock space over L?(R) through the Wiener-
Ito-Segal isomorphism and links the test and generalized functionals. Namely, in a
specific way (called standard construction) we construct a nuclear Fréchet space (F)
densely and continuously imbedded in (L?), and by duality we obtain a Gelfand triple:

(E) C (L*) = L*(E",u) C (E)".

An element in (F) is a test white noise functional and hence an element in (E)* is a
generalized white noise functional. The above picture is easily understood as a direct
analogy of S(R") C L*(R") C S'(R") which is a frame of the Schwartz distribution
theory. Then, B(t) = z(t), ¢ € E*, gives us a realization of the time derivative of a
Brownian motion and, in fact, r — z(¢) becomes a generalized white noise functional
for each fixed t € R.

In our actual discussion we do not restrict ourselves to the case of £ = S(R)
and H = L*(R) but deal with a more general function space on a topological space
T. Typically T is a time-parameter space and is often taken to be a more general
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topological space where quantum field theory may be formulated. Again {z(t);t € T}
is considered as a coordinate system of E* intuitively. In fact, within our framework we
may discuss not only functionals in {z(¢);¢ € T'} but also operators derived from this
coordinate system. The coordinate differential operator 9, = 9/0z(t) is well defined as
a continuous derivation on (£). We have also multiplication operators by coordinate
functions z(t), which are, in fact, operators from (F) into (F)*. Furthermore, J; is a
continuous linear operator on (E£)*. The operators d; and d; correspond respectively to
an annihilation operator and a creation operator at a point ¢t € T and they satisfy the
so-called canonical commutation relation in a generalized sense. The above mentioned
formulation was consolidated in the basic works of Kubo and Takenaka [1]-[4] and has
been widely accepted.

The main purpose of these lecture notes is to develop operator theory on white noise
functionals as well as to offer a systematic introduction to white noise calculus. From
that point of view it is most remarkable that we are free from smeared creation and
annihilation operators. In other words, 0, and J; are not operator-valued distributions
but usual operators for themselves. This leads us to an integral kernel operator:

El,m(n):/THm K1y s Sttty b )l o+ OBty -+ Doy - - dsydty « - o,

where £ is a distribution in {4+ m variables. The use of distributions as integral kernels
allows us to discuss a large class of operators on Fock space. In fact, every continuous
operator = from (F) into (£)* admits a unique decomposition into a sum of integral

kernel operators:
o0

d): Z Elvm(lil'm)Qb, ¢€ (E)v

I,m=0

(1]

where the series converges in (£)". Moreover, if = is a continuous operator from (FE)
into itself, the series converges in (£). In the process we investigate precise norm
estimates of such operators and obtain a method of reconstructing an operator from
its symbol. The above expression is called Fock ezpansion and will play a key role in
our discussion.

Although applications of white noise calculus are widely spreading, the present
lecture notes are strongly oriented toward infinite dimensional harmonic analysis.
The clue to go on is found in the following three topics: (i) infinite dimensional
rotation group; (ii) Laplacians; (iii) Fourier transform. Being almost as new as the
white noise calculus, they have been so far discussed somehow separately. Since
the very beginning of the development Hida has emphasized the importance of the
infinite dimensional rotation group O(E; H), that is, the group of automorphisms of
the Gelfand triple £ C H C E*. In fact, it played an interesting role in the study
of symmetry of Brownian motion and Gaussian random fields. There are various
candidates for infinite dimensional Laplacians which possess some typical properties of
a finite dimensional Laplacian. So far the Gross Laplacian Ag, the number operator N
and the Lévy Laplacian A, have been found to be important in white noise calculus,
though the Lévy Laplacian is not discussed in these lecture notes. As for Fourier
transform, among some candidates that have been discussed Kuo’s Fourier transform
(simply called the Fourier transform hereafter) has been found well suited to white
noise calculus.



INTRODUCTION ix

In these lecture notes the above listed three subjects are treated systematically
by means of our operator calculus and are found closely related to each other. For
example, the Gross Laplacian Ag and the number operator N are characterized by
their rotation-invariance. The Fourier transform intertwines the coordinate differ-
ential operators and coordinate multiplication oprators just as in the case of finite
dimension and, this property actually characterizes the Fourier transform. Moreover,
the Fourier transform is imbedded in a one-parameter transformation group of the
generalized white noise functionals (called the Fourier-Mehler transform) and its in-
finitesimal generator is expressed with A and N. These results would suggest a
fruitful application of white noise calculus to infinite dimensional harmonic analysis.
It is also expected that our operator calculus is useful in some problems in quantum
field theory and quantum probability.

As is well known, a lot of efforts to develop distribution theories on an infinite
dimensional space equipped with Gaussian measure have been made by many authors.
In fact, mathematical study of Brownian motion or equivalently of white noise is now
one of the most important and vital fields of mathematics toward infinite dimensional
analysis.

Since the main purpose is to develop an operator theory on white noise functionals,
the present lecture notes are mostly based on a functional analytic point of view
rather than probability theory or stochastic analysis. In Chapter 1 we survey some
fundamentals in functional analysis required during the main discussion and propose a
notion of a standard countably Hilbert space which makes the discussion clearer. The
purpose of Chapter 2 is to establish the well-known Wiener-It6-Segal isomorphism
between L2(E*, 1) and the Fock space. Chapter 3 is devoted to a study of generalized
white noise functionals. In Chapter 4 we develop an operator theory on white noise
functionals, or equivalently on Fock space, in terms of Hida’s differential operators 0,
and their duals d;. By means of the operator theory we discuss in Chapter 5 a few
topics toward harmonic analysis including first order differential operators, the number
operator, the Gross Laplacians, infinite dimensional rotation group, Fourier transform
and certain one-parameter transformation groups. Chapter 6 is added after finishing
the first draft of these lecture notes. We discuss integral-sum kernel operators, the
finite dimensional calculus derived from our framework and a generalization to cover
vector-valued white noise functionals. These topics are expected to open a new area
in infinite dimensional analysis.
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Chapter 1

Prerequisites

1.1 Locally convex spaces in general

We first agree that all vector spaces under consideration are over the real numbers R
or the complex numbers C. A topological vector space X is called locally convez if the
topology of X is Hausdorff and given by a family of seminorms {||-||,}aca. Then the
seminorms are called defining seminorms for X. Without changing the topology we
may choose a directed family of defining seminorms for X, which means that for any
a, € A there exists v € A such that |||, < |I€]l, and [|€]|; < [I€]|,, for all § € X. In
that case A becomes a directed set naturally. Unless otherwise stated, X = ) means
that two locally convex spaces X and %) are isomorphic as topological vector spaces.

For a systematic study of locally convex spaces we introduce general notion of
projective and inductive systems and their limits. Let {¥,}ac4 be a family of locally
convex spaces. The direct product

H Xa = {(fa)aea; €a € Xo)

a€A
is always equipped with the weakest locally convex topology such that the canonical
projection pg : [Iaea Xo — Xg is continuous for all § € A. The direct sum

P x. = {({a)ae,q € [I Xa; € = 0 except finitely many a € A}
a€EA aEA

is equipped with the strongest locally convex topology such that the canonical injec-
tion i5 : X5 — @uea Xo is continuous for all g € A.

Let {X4}aca be a family of locally convex spaces, with A being a directed set.
Suppose that we are given a continuous linear map fop : X3 — X, for any pair
a,B € A with a < 8. Then {X,, fas} is called a projective system of locally convex
spaces if (1) fa,o = id.; and (ii) fa,, = fo,sfs~, whenever a < 3 < 7. Then

projlimX, = {(ﬁa)aeA € II Xo; fap(és) = o whenever a < ﬂ}
aEA

a€A

with the relative topology induced from [],c4 Xo is called the projective limit of
{X,, fas}- So far as the projective limit is under consideration, it suffices to consider
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a reduced projective system; namely, every canonical projection pg : projlim,c4 X4 —
X3 has a dense image.

We now introduce a dual object. Let {¥,}.ca be the same as above and suppose
that we are given a continuous linear operator g, : X5 — X, for all pair o, 5 € A
with a > . Then {X,, gas} is called an inductive system of locally convex spaces if
(i) 9o, = id.; and (ii) ga,y = 9a,898,~ Whenever a > B > «. Consider ¥ ,>5 Ran(ig —
taga,) which is a subspace of @,c4 X generated by the ranges of the linear maps
ig — tago,s, Where a, B run over all pairs with a > B. If 3,55 Ran(ig — taga,8) is
closed, the quotient space -

1no(li€l/11mxa = %.’{Q/é Ran(ig — taga,s)
equipped with the quotient topology is called the inductive limit of {¥X4, ga,8} -

If ||-|| is a seminorm on a vector space X, then M = {¢ € X;||¢|| = 0} becomes a
subspace of X and the quotient space X/91 admits a natural norm which is denoted
by the same symbol. The completion of X/9 with respect to this norm ||-|| is called
the Banach space associated with the seminorm ||-|]|]. Now consider two seminorms
I-ll, and |||l satisfying [|£]l, < C[|lls, € € X, for some C > 0. Note that Mg =
{¢€ € % |l€lls =0} C Mo = {€ € X [|¢]|,, = 0}. Let X, and X5 be the Banach spaces
associated with ||-||, and ||-|| 5, respectively. Then, the canonical map from X/, onto
X/M, extends to a continuous linear map f,5: X5 — X,

Proposition 1.1.1 Let X be a locally convez space with a directed family of defining
seminorms {||-||,}aca. Then, notations being as above, {Xa, foa,5} becomes a reduced
projective system of Banach spaces. If in addition X is complete, X = projlim,c 4 Xa.

Let X be a locally convex space with defining seminorms {|-||,}aca. A subset
S C X is called bounded if supg¢g ||€]|, < oo for all @ € A. Let X* be the dual space of
X, i.e., the space of continuous linear functionals on X and we denote the canonical
bilinear form on X* x X by (-,-) or similar symbols. Unless otherwise stated, X*
always carries the strong dual topology or the topology of bounded convergence. This
topology is defined by the seminorms:

“x”S = sup l (.’II 35) Iv T € x"
£es

where S runs over the bounded subsets of X. In that case X* is called the strong dual
space as well. For a continuous linear operator T from a locally convex space X into
another 9) its adjoint T™* is defined by (T*y,¢) = (y,T¢), y € D*, £ € X. Then T*
becomes a continuous linear operator from 2)* into X*.

In accord with Proposition 1.1.1 we can discuss the dual space of a locally convex
space. We keep the notations there. Since the canonical map p, : ¥ — X, has a
dense image, its adjoint map p;, : X;, — X* is injective and thereby X7 is regarded
as a subspace of X*. In that case X consists of linear functionals on X which are
continuous with respect to ||-||,. Therefore,

X*=J X, as vector spaces.
a€A
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Note also that X C X} for a < 4. Namely, in a purely algebraic sense X* is the
inductive limit of {X%}. In general, if {X,, fa3} is a projective system of locally convex
spaces, {X},, f% 5} becomes an inductive system of locally convex spaces in an obvious
way. Unfortunately, with respect to the strong dual topology X¥* = indlim,ea X3,
does not hold in general. While, it is true whenever X* and XZ are equipped with
the Mackey topologies 7(%X*,X) and 7(X7,X,), respectively. Instead of going into a
detailed topological argument we note a class of locally convex spaces X for which the
strong dual topology coincides with the Mackey topology 7(X*, X).

A locally convex space is called Fréchet if it is metrizable and complete. Recall
that a locally convex space is metrizable if and only if it admits a countable set
of defining seminorms. A locally convex space X is called reflezive if the canonical
injection X — X** is a topological isomorphism, where X** is the strong bidual of
X. It is known that for a reflexive Fréchet space X the strong dual topology on X*
coincides with the Mackey topology 7(%*,X). Since the projective limit of a sequence
of reflexive Fréchet spaces is again a reflexive Fréchet space, we have the following

Proposition 1.1.2 Let {X,}72, be a reduced projective sequence of reflexive Fréchet
spaces. Then,
(proj 1im35ﬂ) ~ ind lim X,

n—oo

where the strong dual topologies are taken into consideration.

We note another important property of a Fréchet space (in fact, a characteristic
property of a barreled topological vector space).

Proposition 1.1.3 Let X be a Fréchet space. Then for a subset S C X* the following
four properties are equivalent:

(i) S is equicontinuous, i.e., if {||-||,}aca is a directed family of defining seminorms
for X, one may find C > 0 and o € A such that | (z,€) | < C |||, for all § € X
andx € S;

(ii) S is (strongly) bounded;

(iii) S is weakly bounded;
(iv) S is relatively weakly compact.

1.2 Countably Hilbert spaces

A seminorm ||-|| on a vector space X over R (resp. C) is called Hilbertian if it is
induced by some non-negative, symmetric bilinear (resp. hermitian sesquilinear) form
(-,-) on X x X, namely if ||€]|* = (£,€) for all ¢ € X. Here it is not assumed that
(&,€) = 0 implies £ = 0. We further agree that a hermitian sesquilinear form is linear
on the right and antilinear on the left. The Banach space associated with a Hilbertian
seminorm becomes a Hilbert space in an obvious way.

A complete locally convex space X is called a countably Hilbert space or a CH-space
for brevity if it admits a countable set of defining Hilbertian seminorms. We first note
the following
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Proposition 1.2.1 Any CH-space is a projective limit of a reduced projective se-
quence of Hilbert spaces, and therefore, is a reflexive Fréchet space.

Then, in view of Proposition 1.1.2 we have

Proposition 1.2.2 Let X be a CH-space and let {H,, f,.} be a reduced projective
sequence of Hilbert spaces such that X = projlim,_, H,. Then, {H}, f), .} becomes
an inductive sequence of Hilbert spaces and X* = ind lim,, o, H;. Moreover, {H:}>2,
is regarded as an increasing family of subspaces of X* and X* = UL, H; as vector
spaces.

We shall be mostly concerned with a particular class (or construction) of CH-spaces.
The following general result will be useful.

Lemma 1.2.3 Let A be a positive linear operator in a complex Hilbert space §. Then
A is selfadjoint if and only if (1 + A) Dom(A) = H.

We first consider the complex case. Let §) be a complex Hilbert space with norm
Ill, and let A be a selfadjoint operator in $ with (dense) domain Dom(A4) C $.
Suppose inf Spec(A) > 0 and put

p = (inf Spec(A))™". (1.1)

According to the spectral theory we may define a (positive) selfadjoint operator A?
for all p € R with (maximal) domain Dom(A?) C $). For the moment suppose p > 0.
Since 0 ¢€ Spec(AP), by definition A? admits a dense range and bounded inverse.
In fact, we see from Lemma 1.2.3 that the range of AP coincides with the whole $
because we have inf Spec(A?) > 0 by assumption. Therefore (A?)~! is everywhere
defined bounded operator on $. In that case (A?)~! = AP, p > 0, in particular,
Dom(A~?) = §, and

1A 7)oy = 9%, p20. (1.2)
Note also that

APA = A-(p+q)’ AP AT C APH p,q>0.

It is known that the closure of A?A? coincides with AP*9, p,q > 0.
We now introduce a family of Hilbertian norms:

€N, = 14%¢ll,, & € Dom(4%), pe€R. (1.3)
Note that Dom(A?) C Dom(A?) whenever ¢ > p > 0. In fact, by (1.2) we have
€ll, = 1A~P A%lo < p*P||€[l,, € € Dom(A?). (1.4)

Equipped with the norm ||-||, the vector space Dom(AP) becomes a Hilbert space
which we shall denote by &,. Then, the inclusion Dom(A?) C Dom(A?), ¢ > p > 0,
gives rise to a continuous injection f,, : €, — €, and {&,, f,,} becomes a projective
system of Hilbert spaces. In this case we have also a chain of Hilbert spaces:

. CE€C---CEC---CCE=98  ¢>p>0. (1.5)
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Lemma 1.2.4 Forany ¢ > p > 0 the vector subspece €, is dense in &,. In particular,
the projective system {€,, f, .} is reduced.

PROOF. Obviously, €,_, = Dom(A?"?) is a dense subspace of §). Note also from
definition (1.3) that A? is an isometric isomorphism from &, onto §). Hence the inverse
image of &,_, is a dense subspace of &,. On the other hand,

(A”)-‘(eq_,,) — A—p(A—(q—p)y)) = APl-Plgy — A-9g = ¢,.

Consequently, &, is dense in €,. qed
By virtue of (1.5) a subspace of §) defined by

e=¢, (1.6)

p20

becomes a CH-space equipped with the Hilbertian seminorms {||-||,},>0. Obviously
€ is isomorphic to the projective limit:
€ = projlim €,,.
p—o0

To sum up, given a pair (£, A) where A is a selfadjoint operator in a complex Hilbert
space §) with inf Spec(A) > 0, we have constructed a CH-space €.

Definition 1.2.5 The above € is called a standard CH-space constructed from (£, A).

As may be proved easily from definition, we have

Lemma 1.2.6 Let A be a positive selfadjoint operator in § with inf Spec(A) > 0.
Then, the standard CH-spaces constructed from (£, A) and (9, A*) are isomorphic for
any s > 0.

As for the dual space of €, it follows from Proposition 1.2.2 that

¢ =indlim€, and € =[J€  as vector spaces.
P2

Recall that €; is identified with the space of linear functionals on € which are con-
tinuous with respect to ||-||,. With this identification the canonical bilinear forms on
€* x € and on € x €,, p > 0, are denoted by the same symbol (-, ).

By virtue of our particular construction €; and €* can be described more explicitly.
We have already defined in (1.3) a Hilbertian norm ||-||_, on ) for p > 0. Let €_,
be the completion of $ with respect to ||-||_,. Then the identity map from $ onto
itself extends to a continuous injection f_, _, : €_, — €_, whenever ¢ > p > 0, and
thereby {€_,, f_,_,} becomes an inductive system of Hilbert spaces. Furthermore,
there is a natural inclusion relation:

H=€C--CE_,C--CE_,C-- q>p>0. (1.7)
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Recall that A=?: § — €, is a bounded operator and by definition it satisfies
1A7%¢llo = llENl_,, £ €9

Therefore A=? extends to an isometric isomorphism A=? from €_, onto .
The inner product (-,-), of &, is by definition given as

(§,m)p = (AP, APn)o, & € E, (1.8)

It follows from Riesz’ theorem that there exists an isometric anti-isomorphism R, :
€, — €, such that

(2" ,€) = (Ry(2),£),, T°€E, E€E,
On the other hand, in view of (1.8) we have
(Rp(2°),€)p = (AP Ry(3"), AP€)o = (ATP(A=P) ' AP Ry (2"), A%E) -

Thus, h, = (A=?)"' 0 AP0 R, : €, — €_, becomes an isometric anti-isomorphism
such that -
(z°,6) = (A7hy(z"), A7), T"€ €, (€, (1.9)

Moreover, using A~@~P)A=r = A-ef_, . one may prove easily that f_,_,o0h, =
hqo f;, for any 0 < p < ¢. Consequently,

Lemma 1.2.7 Two inductive systems {€,, f> } and {€_p, f_,_,} of Hilbert spaces
are anti-isomorphic under the isometric anti-isomorphisms {h,}. Therefore, € is
anti-isomorphic to indlim,_, €_,.

To be sure we shall give the inverse A;' more explicitly. Let z € €_,, p > 0. Then

A=z € $ and we obtain a continuous linear function £ — (A=?z, AP¢)o, £ € €. In
fact,
[(A=Pz, APE)o| < [[A~Pzll0 [|A%¢E]lo = lIzll_, lI€]I, -

Therefore there exists z* € €; such that
(z,6) = (APz, AP€)g,  EEE,

Thus (1.9) is reproduced and, as is easily verified, z* = h;‘(z). The correspondence
z +— z* yields an anti-linear isomorphism from UJ,5o€_, onto €. In that case,
identifying = with z*, we come to

e =Je, (1.10)

p20

namely, the union of the increasing chain of Hilbert spaces (1.7). This is a counterpart
of (1.5) and (1.6).
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Lemma 1.2.8 Let {e;}52, be a complete orthonormal basis of §. Under the identi-
fication (1.10) we have

e, =3 [(r Ae) . zee, p20
7=0

PROOF. In fact, identifying z with z* we see that

lel, = 1Al = 3 |(Ae.e,)
=
= ; ‘ (/F—P.‘L‘, APA_pej)0|2 = i |<I s A_p6j>|2 .
where (1.9) is taken into consideration. qed

From the universal property of an inductive limit we may deduce the following

Proposition 1.2.9 A linear operator T from €&* into a locally conver space X is
continuous if and only if the restriction of T' to €_, is continuous for all p > 0.

We are now in a position to discuss the real case. Let §) be a real Hilbert space
and its complexification is denoted by $¢c. A densely defined operator A in § admits
a unique extension to a densely defined operator A¢ in $¢c. If Ac is selfadjoint
with inf Spec(Ac) > 1, we say simply that A is a selfadjoint operator in £ with
inf Spec(A) > 1. Taking the real part of the complex CH-space constructed from
(¢, Ac), we obtain a real CH-space € imbedded in §. This € is called a CH-space
constructed from (£, A). The above discussion for complex spaces are also valid for
real spaces with obvious modification.

1.3 Nuclear spaces and kernel theorem
We begin with the following

Definition 1.3.1 A locally convex space X equipped with defining Hilbertian semi-
norms {||-||,}aea is called nuclear if for any a € A there is f € A with @ < § such
that the canonical map f,5: X3 — X, is of Hilbert-Schmidt type.

By definition a nuclear Fréchet space is a CH-space. As for structural characteri-
zation of a nuclear Fréchet space we mention the following

Proposition 1.3.2 A nuclear Fréchet space € admits a sequence of defining Hilber-
tian seminorms {|-|,}22, such that
(i) €], < Cnlll,yq, € € €, with some C, > 0;
(i1) fans1 : Hoyw — H, is of Hilbert-Schmidt type, where H, is the Hilbert space
associated with || ;
(iii) {H,, fimn} is a reduced projective sequence of Hilbert spaces;
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(iv) € = projlim,,_, . H,.

Conversely, if {Hn, fmn} is a (reduced) projective sequence of Hilbert spaces with
Sfans1 being of Hilbert-Schmidt type, then projlim,_ . H, becomes a nuclear Fréchet
space.

Proposition 1.3.3 A Fréchet space X is nuclear if and only if so is X*

Proposition 1.3.4 A standard CH-space € constructed from (9, A) is nuclear if and
only if A= is of Hilbert-Schmidt type for some r > 0.

PROOF. Let ||-||, be the defining seminorms of € given as |{]|, = and denote
by &, the associated Hilbert space.

Suppose first that A" is of Hilbert-Schmidt type with » > 0. Then, there exists
a complete orthonormal basis {e;}2, for § contained in Dom(A) such that Ae; =

Aje; with \; > 0 satisfying Y72 0/\“2’ < oo. Note that {A;®*"e;}%2 is a complete
orthonormal basis for €,,, and

Z“* e, = A ;<

Hence the canonical map f,p4r @ €,4, — &, is of Hilbert-Schmidt type for all p > 0.
Therefore, & is nuclear.

Conversely, suppose that € is nuclear. Let {|-|,}22, be a sequence of Hilbertian
seminorms described as in Proposition 1.3.2. Since € = projlim,_, €, as well, we
may find n > 0 and r > 0 such that

I|§I|O S C |£|n Ll l{ln-{—l S C‘l “E”r ’ £ € @’

with some C,C" > 0. Then we have a chain of canonical maps:

fan+1

C=9H—H, «— Hppy — €.

Since f, .41 is of Hilbert-Schmidt type, so is the composion of the three which is
nothing but the canonical map €, — & = §. Let {e;}32, be a complete orthonormal
basis of $. The obvious relation

(A"e.' . A_TCJ’),- = (ATA_rC,‘ 5 ATA_TGJ‘)O = (e ,61’)0 = (5,'1'

means that {A7"¢;}%2, is an orthonormal sequence in €,. Since the canonical map

€, — & = H is of Hilbert-Schmidt type, 3232 0||A"e,|lo < o0, that is, A~" is of
Hilbert-Schmidt type. qed

In particular,

Corollary 1.3.5 A standard CH-space constructed from (), A) is nuclear if A is a
positive selfadjoint operator with Hilbert-Schmidt inverse.



