

9062400

!
l/ o B

i

MK

E9062400 i

N
oNDO
sC
ANC!

 SAN FR p

o o

) e »

pRE s v
DEN\\G B ;
P\OP\ ot \,\a(ff‘
- oA

i
e CoPYRIGHT © 1977, BY ACADEMIC PRESS, INC.
¢ ALL RIGHTS RESERVED,
NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR
TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC
OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY
3 INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT
f PERMISSION IN WRITING FROM THE PUBLISHER.
i
ACADEMIC PRESS, INC.
111 Fifth Avenue, New York, New York 10003
United Kingdom Edition published by
ACADEMIC PRESS, INC. (LONDON) LTD.
24/28 Oval Road, London NW1
Library of Congress Cataloging in Publication Data
Marateck, Samuel L
4 FORTRAN.
ad
| Includes index.
i 14 Fortran (Computer program language). I. Title.
rﬂ QA76.73.F25M37 001.6 424 76-45991
ISBN 0-12-470460-3

P

PRINTED IN THE UNITED STATES OF AMERICA

<
¥
S
(S
>
E
S

BE AR B, B EE#EPDFIE S) ;. www. ertongbook. com

Preface

This book is an outgrowth of notes the author uses in a course in FORTRAN that he
teaches to undergraduates at New York University. Its purpose is to teach the student
how to program using the FORTRAN language, and it is written for students who have no
prior knowledge of computers or programming.

The design of the book has special significance and deserves special comment. The
right-hand pages contain pictorial material on programming which most students will
readily understand; this is described in detail in **To The Reader.”” The left-hand pages
contain the explanatory text. You will see that strict adherence to this design has resulted
in a number of partially filled pages. It has been the author’s experience with a book on
BASIC, which he wrote and designed in the same way, that in many cases students who
visit the computer center and have studied only the right-hand pages, have been able
to write and run programs on their first visit. The student should, in order to understand
all facets of the programming techniques described, also read the text on the left-hand
pages.

There are other features that should help the beginning student. The author usually
introduces only one new programming concept per program. Thus many of the programs
in the book are first written as a series of smaller programs, each of which serves as a step
in understanding the entire larger program.

Easy to understand programs have been used to illustrate the various programming
techniques discussed in the book. These programs are the solutions to problems drawn
from various disciplines, and all students, whatever their major field, should understand
them without difficulty. After students have been presented these programs, they will
have the ability to read optional sections in which these same techniques are applied to
more advanced programs.

The author also includes examples of common programming mistakes made by
beginning students when they are not explicit enough in translating their thoughts into
programming instructions. The author has found this type of example to be an effective
teaching technique.

Since one of the most difficult parts of learning FORTRAN is the mastering of the
input/output statements, these statements are introduced early in the book. Their ram-
ifications are explained as the programs demand it. Thus the reader is exposed to
input/output concepts gradually. Then in Chapter 8 the author explains the input/output
capability of FORTRAN in great detail.

Sound programming techniques, including programming style and its logical exten-
sion, structured programming, aid the programmer in all stages of program writing: the

Xiii

Xiv Preface

design, writing, debugging, and maintenance of programs. Sound programming tech-
niques are emphasized from the beginning, and they are introduced as they are needed
and as the statements being discussed allow their use. Chapter 10 is devoted to the
application of structured programming in the design and writing of programs. Also
discussed in that chapter are top-down design, top-down testing of programs, and the
HIPO diagram.

At some point the FORTRAN programmer should understand round-off errors and
significance as they relate to the bit configuration of the computer being used. The greater
part of Chapter 12 is devoted to a discussion of these concepts, although the effect of
round-off errors is introduced early in the book.

Almost the entire book is devoted to a discussion of American National Stan-
dard (ANS) FORTRAN. Since some students will be using Standard Basic FOR-
TRAN, which has fewer instructions and which consequently can be used on machines
which have less memory, any statement that is described and is not available in Standard
Basic FORTRAN is footnoted as such.

The features of the WATFOR and WATFIV compilers are described as well as features
of WATFIV-S (the IF-THEN-ELSE and the WHILE-DO) along with their ANS analogs.
Many features of WATFOR/WATFIV/WATFIV-S have been incorporated into the proposed
ANS X3.9 FORTRAN language revision (1977), and thus even the reader who will not be
using WATFOR/WATFIV/WATFIV-S might want to take more than a casual interest in
sections describing these compilers because of their applications to the proposed ANS
compilers.

Those teachers who do not intend to use all the chapters in the book may be
interested in knowing that the last four chapters—Chapter 10 (structured programming),
Chapter 11 (The COMMON and the EQUIVALENCE statements), Chapter 12 (Sig-
nificance, DOUBLE PRECISION, and COMPLEX numbers), and Chapter 13 (More
Input/Output)—can be read in any order.

We have included in the appendices material that all readers might not have use for,
€.g., control cards for the IBM 360/370 and time sharing.

It is a pleasure to thank Professor J. T. Schwartz and Professor Max Goldstein for
their friendship, their many kindnesses and for their constant support while I was writing
this book; and H. David Abrams and Professor Carl F. R. Weiman for acting as a
sounding board for many of my ideas. It is also a pleasure to thank Jeffrey Akner and his
computer facility staff for their cooperation and Professor Robert Richardson and Profes-
sor George Basbas for granting me free time on their computer.

To the Reader

This book has been written on the premise that it is at times easier to learn a subject
from pictorial representations supported by text than from text supported by pictorial
representations. With this in mind, beginning with Chapter 2 we have used a double page
format for our presentation. On the left-hand page (we call it the text page) appears the
text, and on the right-hand page (we call it the picture page) appears the pictorial
representation, consisting mostly of programs and tables.

Each picture page was written to be as self-contained as possible, so that the reader,
if he so desires, may read that page first and absorb the essence of the contents of the
entire double page before going on to read the text. The text page consists of a very
thorough discussion of the programming techniques presented on the picture page. It
refers to parts of the programs and tables on the picture page; when reference is made on
the text page to a given line of print on the picture page, that line—whenever it is feasible
to do so—is reproduced in the text to promote readability. Students who have a previous
background in programming languages and others who understand the picture page
completely may find that in some chapters they can skip the text (left-hand) pages and
concentrate on the picture pages.

The following techniques are used as aids in making the picture page self-contained:

I. As many as possible of the ideas discussed in the text are illustrated in the
programs and tables. The captions beneath these capsulate much of what is said in the
text. g

2. Words underlined in the captions describe lines underlined in the figures. To
illustrate this, part of Fig. 2.2a is reproduced below.

VAR1 = 114
VAR2 = 20.2
STOP
END

Figure 2.2a. In the program the
number 11.4 is assigned to the vari-
able VAR1 and 20.2 to VAR2 in the
assignment statement.

The statements VAR1 = 11.4 and VAR2 = 20.2 are underlined to show that they are

XV

XVi To the Reader

described by the words underlined in the caption. Thus they are both assignment state-
ments.

3. To the right of most programs appears a table that describes what effect certain
statements in the program have on the computer’s memory. For instance, the following

table describes the effect that VAR1 = 11.4 has on the memory:
DESCRIPTION VAR1
VAR1=11.4 114

We see from the table that this statement caused the number 11.4 to be associated with
VAR1 in the computer’s memory. The line-by-line analysis afforded by these tables
should aid the reader in understanding the program.

Contents

y

" Preface

/‘ To the Reader

1

Introduction to Computers and Programming

__._..__._.
D W —

2

General Remarks

The Keypunch

Input and Output Devices

Solving a Problem

Algorithms

FORTRAN, WATFOR, and WATFIV

Introduction to FORrRAN

2.1
22
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
13
.14
15
.16
A7

(SO ST \O B (S I S}

General Remarks

The Assignment Statement

The END Statement

The Listing of the Program; the STOP Statement
Executing the Program

The WRITE and FORMAT Statements

The FORMAT-free PRINT Statement

Performing an Addition

Performing a Multiplication

Restrictions and Limitations in Using F Format
REAL and INTEGER Mode

I Format

The INTEGER and REAL Declaration Statements
Restrictions Involved in Using I Format
Redefining Variables

Debugging Programs on the FORTRAN compiler
Debugging Using the WATFOR/WATFIV compiler

vii

xiii

XV

P— p—
—_— O 00 O\ N =

12
12
14
14
16
18
24
26
28
30
32
36
40
42
44
48
52

viii Contents

2.18 Labeling Cards | : 58
2.19 Continuation Cards \ 58
2.20 The Formatted PRINT 60

Problems W 62

3

Calculations and the READ Statement

3.1 Performing Calculations in FORTRAN 64
3.2 Peculiarities of REAL and INTEGER Arithmetic 70
3.3 Mixed Mode 74
3.4 The READ Statement 76
3.5 Some Programming Tips on FORMATs and DATA Cards; Repeated Field

Specifications 80
3.6 The WATFOR/WATFIV READ Statement; Doing Calculations in the

PRINT Statement 82
3.7 The GO TO Statement 88
3.8 Flow Charts 90
3.9 Rounding Numbers 92
3.10 Strings 96
3.11 Strings in WATFIV 100
3.12 Another Form of the READ Statement 102

Problems 104

Functions and the IF Statement

4.1 Library Functions 108
4.2 The Logical IF Statement 114
4.3 Relational Operators: EQ, NE, GT, LT, GE, and LE 128
4.4 Other Applications of the |IF Statement 130
4.5 Writing REAL Constants in Exponential Form 144
4.6 How REAL and INTEGER Constants Are Stored 146
4.7 Printing Using E Format 148
4.8 Using X Format 150
4.9 The Arithmetic IF Statement 152

Problems 156

L pemet——

S

Contents

The DO Loop, the IF-THEN-ELSE and the WHILE Loop

5.1
 Jh0.
5.3
5.4
553
5.6
5.7
5.8
3.9
5.10
5.11
5.12

6

The DO Loop

T Format

More on DO Loops

Summations and Products

Negative Increments; Reading a Variable Number of Data Cards
The AND, OR, and NOT Logical Operators

LOGICAL Constants and Format

The LOGICAL Declaration Statement

Nested DO Loops

Applications of the DO Loop

A WATFIV-S Feature: The IF-THEN-ELSE (The Block IF)
Another WATFIV-S Feature: The WHILE Loop

Problems

Subscripted Variables, the DATA Statement, and the Implied DO Loop

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7

Subscripted Variables

The DATA Statement

The Computed GO TO Statement
INTEGER Subscripted Variables
Sorting

Satisfying Input and Output Lists
Implied DO Loops

Problems

Doubly Subscripted Variables and Matrix Multiplication

7.1
42
7.3
7.4

Doubly Subscripted Variables

How Array’s Elements Are Stored in the Computer’s Memory
Matrix Multiplication

Reading Values into Arrays

Problems

ix

158
168
170
178
186
196
202
204
210
212
230
234
236

238
254
258
262
268
274
280
288

290
316
320
332
344

X

8

Contents

Input/Output

8.1 Printing Using F Format

8.2 Reading Using F Format

8.3 I Format

8.4 E Format

8.5 Using Slashes in FORMAT Statements

8.6 Introduction to Alphanumeric Constants

8.7 More on the Implied DO Loop

8.8 Using Arrays Without Subscripts in READ and WRITE Statements
8.9 Repeated Groups of Field Specifications

8.10 The DATA Declaration Statement

8.11 Using G Format

8.12 T Format

8.13 Hollerith Fields

8.14 Control Characters

8.15 Using Strings in FORMATS Used with READ Statements
8.16 Reading Using X FORMAT

8.17 More on the READ and WRITE Statements; the END Option

9

Problems

Functions, Subprograms, and Subroutines

9 |
».2
9.3
9.4
2]
8.6
9.7
9.8
9.9
9.10
911
12

Statement Functions

Subprogram Functions

Using Arrays in Subprograms

Redefining Dummy Arguments in Function Subprograms
Subprograms Calling Other Subprograms

Subroutines

The Arguments of Subroutines and Function Subprograms
Differences between Subroutines and Subprogram Functions
Modularizing Programs

Using Arrays as Arguments of Subroutines

Plotting Histograms

Matrix Multiplication Using Subroutines (Optional Section)
Problems

346
348
350
352
356
362
364
372
380
390
394
396
398
400
402
404
404
406

408
420
434
450
454
456
460
460
462
466
472
478
486

10

Contents

Structured Programming

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

11

Introduction to Structured Programming
Program Design Aids: Pseudo Language
Top-Down Design and the Hierarchial Diagram
Top-Down Testing

Program Design Aids: the HIPO Diagram
Management-Programming Techniques

Internal Documentation

Generality, Independence, and Integrity
Problems

The COMMON Statement and the EQUIVALENT Statement

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8

12

The COMMON Declaration Statement

Labeled COMMON

BLOCK DATA Subroutine

More on COMMON

Comparison of Using Argument Lists and COMMON List
The EXTERNAL Statement

Execution-Time Dimensioning

The EQUIVALENCE Statement

Problems

Significance, Double Precision, Complex Numbers

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8

Converting Binary Numbers to Decimal Numbers
Significance

Overflow and Underflow

More on Significance

Hexidecimal Representation

Double Precision

Newton’s Method and DOUBLE PRECISION Functions
Complex Numbers

Problems

Xi

488
490
492
496
518
520
522
524
528

530
542
552
556
560
562
564
582
588

590
592
594
596
602
604
610
616
618

Xii Contents

13

More Input/Output

More on A FORMAT 620
CHARACTER Mode in WATFIV (and the Proposed ANS FORTRAN
Revision) 634
13.3 Execution-Time FORMAT 644
13.4 The NAME LIST Statement 646
13.5 The PUNCH Statement 646
13.6 The Scale Factor 648
13.7 Files 650
Problems 654
Appendix
A Object Decks 656
B Control Cards for the IBM System 360/370 656
C Control Cards for WATFIV 660
D Time Sharing 661

Subject Index 665

Introduction to Computers
and Programming

1.1. General Remarks

If you wished to categorize the times we live in, in terms of the technological
advance that most affects our lives, you would call our age the age of the computer; the
computer is all encompassing. For instance, in business some of the uses of computers
are for billing, check writing, and inventory control; every large organization uses
computers to process its records. In another realm—science and engineering—there are
two spectacular examples of the use of computers: (1) The multitude of calculations that
enabled the space program to put a man on the moon were done by computers. (2) The
pictures taken on Mars by the Viking lander were reconstructed on earth by computers.

In order to solve a problem, the computer follows a set of instructions called a
program. The people who write these programs are called, appropriately, programmers.
The form that the instructions in the program take depends on the programming language
used. It is the purpose of this book to teach you to program in FORTRAN. The name
FORTRAN is taken from FORmula TRANslation. FORTRAN was developed in the
1950s; as the name implies, it was devised as a language for solving mathematical and
mathematics-related problems. FORTRAN is used today to solve problems in mathemat-
ics, the physical sciences and engineering, the social sciences and linguistics, and other
related fields.

The type of computer used in an overwhelming number of applications solves
problems and processes information by manipulating digits; hence, this type of computer
is called a digital computer. A FORTRAN program is run on a digital computer.

So that you may understand the relation of FORTRAN to the computer, we first
briefly describe computers. One way of picturing a computer is as a maze of on-off
electrical switches connected by wires. Thus you might imagine that if a programmer
wished to instruct a computer to do something, he would have to feed it a program
composed of a series of on-off types of instructions. As a matter of fact, the first programs
were written like this. The type of language that uses this form of instruction is called
machine language. In its most primitive form, a program written in machine language
consists of strings of 0’s and 1's, where a zero represents an open switch, and a one

1

[

2 1. Introduction to Computers and Programming

represents a closed switch. As you can surmise from this brief description, learning to
write programs in machine language can be very difficult. Moreover, even once you
master it, writing in machine language can be very tedious. For this reason, computer
languages closer in form to the spoken word—in our case, English—and to algebra, have
been devised. The most widely used of these languages is FORTRAN. Computer lan-
guages closer to the machine are called low level languages. An example of a low level
language is machine language. Computer languages similar in form to how we express
ourselves, either by the spoken word or by mathematical symbols, are called high level
languages. FORTRAN is a high level language.

A program written in FORTRAN cannot be directly understood by the computer; it
must first be translated into machine language. A special program does this. It is called a
compiler, and is already present in the machine when we feed the computer our program.
Once a program has been translated, we say that it has been compiled. The original
FORTRAN program is called the source program, and the translated program is called
the object program.

FORTRAN has grammatical rules that must be followed by the programmer. These
rules are similar to those in English that govern the sequence of words in a sentence, the
punctuation, and the spelling—we shall learn these rules in later chapters. Before the
compiler translates your program, it checks whether you have written your program
instructions according to the grammatical rules. If you make grammatical errors in
writing an instruction, don’t worry; the compiler has been written so that it will inform
you of these. Programmers refer to grammatical errors as compilation errors or compile-
time errors. Your program must be free of compile-time errors before the compiler will
translate your program.

We now describe the main components of the computer. Essentially, the computer
consists of an input unit, a memory unit, a logical unit (or arithmetic unit), an output
unit, and a control unit. Our program is communicated to the computer through the input
unit. All the mathematics and decisions in the program are done in the logical unit. The
program itself and the numbers it processes are stored in the memory unit. The computer
communicates the results of our program to us through the output unit. The control unit
directs the activities of the other four units. The control unit and the logical unit are
referred to collectively as the central processing unit (abbreviated as CPU). The word
hardware is used to describe the physical components of the computer, such as these
units, whereas the word software is used to describe the programs. We shall use the word
system to describe the programs, such as the compiler, that process the programs you
write.

1.2. The Keypunch

The first, and still the most widely used, means of communicating a program to the
computer is to punch the program instructions on a card. The device we use to do this is
called a keypunch. In Fig. 1.1 we show a typical keypunch; and in Fig. 1.2, the keypunch
keyboard.

