

Software Engineering

International Computer
State of the Art Report

INFOTECH Information Limited Maidenhead Berkshire England @

UuDC 681.3
Dewey 658.505
ISBN 8553-9100-6

Library of Congress Catalog Card Number 72-189688

© Infotech Information, 1972

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system or transmitted in
any form or by any means, electronic, mechanical, photo-
graphic or otherwise, without the prior permission of the
copyright owner.

The
software

software

industry

Education

Computer
science

ication

ormance '\

evalua-
tion

Specif-ﬁi

cumentat

i

cumentat

'The

software
crisis

The
software
industry

Education

Computer
science

CONTENTS

Foreword

Software engineering

Introduction

Software design

Project control

Documentation

Software production

Correctness and testing
Performance evaluation

The software industry

Education of software engineers

Presentations

The origins and meaning of software engineering
S Gill

The outlook for software components
M D McIlroy

Hierarchies: an ordered approach to software design
I C Pyle

A software engineer's workshop: tools and techniques
R W Bemer

Software production management: needs and techniques
A E Burger

Experience with optimizing computer systems
P Prowse ST

b1
63
95
117
141
157
179
203

217

243

253

273

287

305

iii

Contents

Error and breakdown immunization

M D Oestreicher

A large user's software problems and some solutions

A H Duncan

Training future software engineers
F L Bauer

The software industry: future structure
J N Buxton

Software engineering: paths for the future
K W Kolence

Invited papers

Contractual relations in the software industry
W A Freyenfeld

The documentation of computer programs
D R Judd

Formalizing the task of software estimation
J M MeNetl

The design of large data systems
P Naur

Programming languages for the software engineer
J Palme

Program readability
K V Roberts

Software efficiency
P A Samet

Bibliography

Indexes

Subject index
Cumulative subject index
Contributor index

Chairman and delegates

iv

327

341

353

369

379

393

411

h2s

nu7

461

bgs

517

531

555
557

567
569

FOREWORD

The term 'software engineering' is not clearly defined; most people
who use it have their own, usually unique impression of what they
mean by it. Many people, of course, disagree even over the meaning
of the word 'software'. Nevertheless, this does not detract from
the value of the analogy between building and maintaining software
and the activities associated with traditional fields of engineer-
ing, which derives from two main sources. First, simply that soft-
ware is specified, designed, produced, tested, and maintained makes
the analogy of value. Second, the analogy is of particular value
since software has traditionally embodied the most difficult and
least understood aspects of system implementations and so the build-
ing of software used to be, and in many instances still is, approach-
ed more as a form of art or abstiract science than an applied science:
the engineering analogy brinzs with it a necessary change in attit-

ude.

Although there is a consensus as to what the qualities of good soft-
ware are, the design of software, and in particular large scale
software, is a complicated and difficult task, with almost as many
approaches as there are principal software designers. Most of these
approaches do however have at least one common facet in that they
are all in some sense hiéerarchic. The use of hierarchic structures
has been a prime influence in all scientific fields since before
Aristotle. The field of software is no exception: hierarchic des-
ign approaches have proved so far the most conveniént way of simpli-
fying the connection patterns in complex software. Of course, not
every software designer draws the same implications from use of the
hierarchic structure, or makes use of such structures with the same
degree of explicitness; for example, compare the approaches of
Woodger, Dijkstra, Pyle, Jackson, and Morris in the State of the

Foreword

Art Reports entitled High Level Languages, Software Engineering,
Application Technique, and The Fourth Generation. However, some
seeds of doubt regarding the use of hierarchies are being sown.
Some people see rigid use of the tree structure as-a limitation,
imposed from within ourselves by our perception of things. Also,
there is even a growing feeling amongst a small minority of people
that hierarchic structures are not as universally applicable as we
have tended to think in the past and that we should be searching
for alternative, horizontal structures.

The production of software is probably the area where the engineer-
ing analogy has so far had the most effect. The effect here has
two main aspects. First, the engineering analogy has led to the
realization that, since the equivalent of production in traditional
engineering fields is straightforward replication in software,

what is referred to as software production is really analogous to
building a prototype. This obviously changes what one can justly
expect of the first version of a piege of software. Also, it has
important implications for management in that management of a soft-
ware project is more research and development management than prod-
uction management in the traditional sense of the phrase. Second,
developments in the last decade have led to the production of soft-
ware becoming an activity of an increasingly industrialized nature.
With talk of software components, software engineer's workshops,
software factories, and with the developments in what is now refer-
red to as automatic programming, software production technigues
have evolved rapidly and the software programmer now has a wealth

of tools and aids, at least potentially, at his disposal.

In testing also such aids are available, although here the overall
approaches used have come under severe criticism from some quarters.
The most famous sttack on the traditional debugging approach to
software testing has come from Dijkstra, orignator of the discipline
known as structured programming and proposer of correctness proving
for programs. In the words of Micheal Jackson, himself greatly
influenced by the thinking of Dijkstra, the many debugging aids
available "are really just cosmetics for a dying program", since
softwape systems are not designed so that they are testable; if
software is not structured in such a way that systematic testing

at the various levels of detail of the software, rather than testing
complete programs, can be accomplished then the number of test cases
necessary rises to such an extent that fully effective testing be-
‘comes impossible. The criticisms made by Dijkstra and his followers
certainly are valid when one looks at the unrealiability of much

2

Foreword

existing software in use today, and structured programming is be-
coming more and more recognized as a laudable, and practical, disci-
pline to follow; however, the potentially profound effect of correct-
ness proving in programs has yet to be felt, and many feel that it
never will, at least with any significance for the majority of users.
Others, although they cannot see correctness proving as generally
applicable in practice at the present state of the art, take the

view that such an approach will ultimately prove indispensable.

The maintenance of software is an area of particular concern simply
because, with the average lifespan of pieces of software tending
always to lengthen, maintenance can account for as much as 70% of
total software cost. The main problem here is that maintenance can
be made an intolerably difficult task if the preceding design
approach ignored testing and maintenance needs. If maintenance is
viewed as an enhancement activity then the situation is improved
since this involves iteration through the whole cycle of software
building.

The extended maintenance/enhancement phése of the software life
cycle has increasingly led to the desire to evaluate system perform-
ance, both for tuning and planning purposes. In a climate where
many users feel that they are living with inefficient software,
interest in performance evaluation has spread rapidly and a number
of system measurement tools have come onto the market. Many great
savings have been achieved thrdugh use of such tools, although there
are very real dangers in choosing what to measure and in interpret-
ing measurement results.

Apart from the main activities of specification, design, production,
testing, maintenance, develbpment, and tuning, the engineering an-
alogy applied to the field of software has broader, and possibly
more profound, implications in the areas of education and industry
structure. It is probably in these two areas where any changes

are likely to have the greatest effect on the business of building

software.

C Boon: Editor

Foreword

REPORT STRUCTURE

Information is .a function of time as well as data. Therefore, just
as considerable thought has been given to selecting the most import-
ant contributors and significant contributions to this Report, so
has great attention been paid to enabling the reader to find his

way round the Report quickly and easily. The diagram below illus-
trates the paths through the Report.

@

FOREWOKD Level 1
o ANALYSIS] Level 2
» PRESENTATIONS AND INVITED PAPERS] Level 3
| { BIBLIOGRAPHY] Level 4
| 7 7 T T~
| s /] \ NN
| % / /] % N N
| 7/ / / | \ \ AN
i s / /] \ \ N
] / / / I \ \ N
| / ’ / I \ \ \
14 I's ¥ [v & R} “a

Other State of
the Art Reports Other sources Level 5

The editorial content of the Foreword is designed to set the scene
for the Report and should be read for a broad, summary view of the
subject. The Analysis, which bears the Report title, brings tor
gether the essential material of the subject of the Report, struct-
ured by topics: 72t <8 strongly recommended that everybody read the
Analysis. From topics within the Analysis, pointers create a path
thpough other material on the same or related topics in the rest of
the Report. The Analysis has been designed to convey, in as short
a space as is compatible with rendering the content easily assimil-

able, the principal issues in the subject under discussion.

The Presentations and Invited Papers together form a further level
of information. These may be read in their entirety or a selection
of passages on related topics may be obtained via pointers from the

Analysis.

The Bibliography, which is arrived at via pointers from the previous
two levels of information, contains an introduction as well as ref-
erences and abstracts. The introduction will help to ensure that
the most suitable reference is selected before any effort is made

to obtain the corresponding document.

y

Foreword

The Bibliography, of course, leads to a further level of informat-
ion, outside the Report.

To refer back to material within the Report, it is recommended that
a search be made of the indexes, which contain pointers to the
Analysis and to the Presentations and Invited Papers. Once a suit-
able reference inside this material has been found, pointers to
related material will be found as before. To provide further assis-
tance, the normal subject index is supplemented by a contributor
index and a cumulative subject index containing back pointers to
previous State of the Art Reports.

To find a specific paper, presentation, or section of the Analysis,
reference may simply be made to the Contents list.

EDITORIAL CONVENTIONS

To avoid any misconceptions, the following editorial conventions
concerning the Analysis should be noted.

1 Material in italices is attributable to the editor.

2 Other material is attributable to the person whose name precedes
it. It should be noted that a contributor's remarks are attri-
butable to that person only and not to any organization with
which he or she is associated.

3 Consecutive passages in the Analysis imply no chronological
sequence whatsoever; passages are juxtaposed entirely at the
editor's discretion. However, any given extract always repre-
sents consecutive speech, except where 3 stops separate text.
These stops indicate that separate extracts from the same con-
tributor have been juxtaposed by the editor.

4 Many of the quotations used in the Analysis derive from presen-
tations and discussions that took place at the Stateef-the Art
Lecture. Speakers at the Lecture can be identified in the pres-
entations; the names and affiliations of the chairman and dele-
gates appear on page 567. Other quotations derive either from
invited papers, in which case the author can be identified from
the front page of his paper, or from other sources, in which
case the source is given with the quotation.

5 Where a paper is attributable to more than one author, only the
first of the authors' names is given as a reference.

Foreword

One further convention should be noted. Numbers in brackets and

bold type appearing in the text refer to items in the Bibliography.

ACKNOWLEDGEMENTS

It is stressed that all contributors submitted material in an en-
tirely personal capacity; their remarks must not be taken to repre-
sent necessarily the views of any organization with which they are

associated.

Infotech would like to thank all contributors for the material sub-
mitted and is grateful for the cooperation of the following organ-
izations, members of whose staff gave presentations at the State of
the Art Lecture.

Software Sciences Limited

Bell Telephone Laboratories Incorporated

UK Atomic Energy Authority

Honeywell Information Systems Incorporated

IBM (UK) Limited

Esso Petroleum Limited

Computer Analysts and Programmers Limited

Barclays Bank Limited

Mathematisches Institut der Technischen Universitat Miinchen
University of Warwick

Boole and Babbage Incorporated

Infotech would also like to thank F Ford of The National Computing
Centre Limited (in the UK) for providing material for the bibliog-
raphy.

]
COPYRIGHT

It should be noted that the copyright for the Report as a whole
belongs to Infotech Information Limited. The copyright for indiv-
idual contributions belongs to the contributors themselves.

Software engineering: introduction

INTRODUCTION

The nature of software engineering

Software engineering can be said to exist in that there is a
strong analogy between the whole business of building and

maintaining software and traditional branches of engineering.

PYLE: This State of the Art Report on software engineering
causes us to think carefully about the total cycle of events
in a computer-based system. The sequence of events is not
much different from that in any other sort of engineering,

but many of the details and relative importances are different

when a substantial amount of software is involved.
The whole cycle is characterized by the acronym DITHER.

Design
Implement
Test
Handover
Evaluate
Replace

We design the system, implement it, carfy out tests, and then

hand-over to the user, who evaluates it and then sooner or

Software engineering: introduction.

later decides to replace it and repeat the cycle.

Software engineering is concerned with all events in the

cycle, related to systems substantially involving software.

Application of the engineering analogy to the building and
maintenance of software implies the existence of a science

of which software engineering is a practical application,

in the same way that electronic engineering is a practical
application of particular branches of the sciences of physics
and mathematics. Computer science 1is, of course, the usually
assumed theoretical basis for software engineering, although
it is still debated whether or not computing is sufficiently
advanced for it to be said that such a science yet exists.

A substantial body of knowledge has, however, been developed
in the comparatively short history of computing and those

who doubt the existence of a computer science have their
opinion stem either from the point of view that computing is
in its early infancy and has not as yet realized anything
like its full potential for development or from the observa-
tion that the current state of affairs leaves much to be
desired when one looks at computing in practice. (In the
latter, they are, in fact, talking about the engineering
rather than the science.) Although, throughout the computer
community, there is disillusionment after much initial optim-
ism, such a slow rate of development with such a lag between
theory and practice is usual in emergent branches of know-

ledge and expertise.

The term 'software engineering' has come into use since 1t

was chosen as the title of the Garmish NATO conference in

1968 and subsequently the title 'Software engineering tech-
niques' was chosen for the'Rome NATO conference in 1969
(001,002). A popular view at the time of the first of these
conferences was that there existed a software crisis and that
a software engineering was required to solve this crisis

(see The software crisis, pl9). The prevailing attitudes at
the NATO conferences are discussed by McIlroy and Oestreicher.

McIlroy discussés the attitude at Garmisch in terms of the

8

So ftware engineering: introduction

development of a software components industry (see also pl28).

McILROY: The Garmisch NATO Conference was a heady group ther-
apy session, full of breastbeating about the software crisis
and the general malaise of our trade and the way we practise
it. I am not convinced there is any special crisis. The
software I use seems to work as often as the airplane I used
to own, the principal difference being that normally I was
able to find out whether or not the airplane was sick before
I took off.

We all nhave seen good software and bad software, and if you
understand the least bit about programming from the inside
you can readily distinguish the one from the other. Except
in numerical analysis, good-and-bad in software is a night-
and-day matter. Good means it works. Good means it works at
a reasonable speed; and, for the areas of software where any-
one can appropriately talk about engineering, the meaning of
"reasonable" is usually obvious. Good means it works. as_you
expect it to without resort to soothsaying or other magical
invocations. Also, "good" has corollaries. If it is good,
it is probably readable, or else deeply mathematical or legal.
(Although you cannot turn labour agreements or fast fourier
transforms into really perspicuous code, even these need to
be intelligible to the initiate.) If it is good, it probably
is not-the first time its author has done it. If it is good,
the author has probably done other good things too.

One intent of the industry is to institutionalize the good.
I admit, but choose largely to ignore, that the industry
intends also to make money. Marketing people working for
the software giants have somehow ascertained that to make
money you hust stock a super-set of all other software; this
is where we run into some trouble with the components idea.
My NATO scheme was to have a 'giant catalogue of parts from
which to build your software, all systematically classed by
function, precision, speed, and robustness. Now this mark—
eteer's union-or-all-good-things plan calls for a pile of

hand-worked idiosyncratic pieces. You know them well and

Software engineering: introduciion

I shall spare you a feast of excruciating examples.

Oestreicher discusses the attitudes at both conferences in
terms of building what he calls 'critical systems', that is,
systems in which a large part of the computer resources are
dedicated to the project, the success of the enterprise dep-
ends on the correct and reliable functioning of the system,
the services provided go beyond what could be done by manual

means, and in which a lot of money is involved.

OESTREICHER: The first NATO conference, at Garmisch, 1 under-
stand, left the participants with some feeling of excitment.
At last we were getting somewhere. The second conference,

at Rome, was rather optimistically entitled Techniques of
software engineering, which seemed to promise some solid
achievements, and indeed there were many extremely interest-
ing papers submitted describing really excellent work, using
advanced and powerful techniques, in the fields of portability,
ensuring correctness, the use of measurement and other tools
to ilmprove efficiency, and so on. These represented achieve-
ments in the field of software engineering. However, I

think it would be fair to say that very few of these achieve-
ments were made in the realm of what I have called critical
systems.

An exception, you might think, was the report by J D Aron on
the work done by IBM's Federal Systems Division for the
Project Apollo space program. Now there was a critiéal system
according to the definition if ever there was one. But the
system Aron described had two distinctive features: extremely
traditional programming methods and extremely good project
managment. Also, Aron said that there were two factors that
contributed greatly to making the project a success. These
were: good reiations with the client (NASA) and an effectively
unlimited budget. For example, when it began to seem as
though the late delivery of the System/360 operating system,
03, might delay the project, they (reluctantly) produced

their own operating system (RTOS).

10

Software engineering: introduction

The reason I am mentioning the NATO conference at Rome is
that I believe it was a rather disillusioning experience for
many of those attending. There was, to put it very roughly,
an unexpected gulf between theory and practice. The diffi-
culty of applying sound engineering principles to the constr-
uction of critical systems was unexpected and little under-
stood. I myself find it extremely difficult to describe what

the difference is between a pilot project and a real project.

What we are likely to forget, of course, is how many pilot
projects fail completely and never see the light of day.

Suchi projects do not get described in papers presented at
NATO conferences: they die very quickly. Therefore, we ob-
servers tend to get a very biased view. We ask, "Why is it
that so many small projects are so well implemented, using
such cound and advanced tecnniques, and no serious, large
scale, critical projects have been brought off so neatly?";
the answer is that there was no foolproof way for management
to distinguish between new, sound, software engineering prin-
ciples, on the one hand, and good sounding new ideas that
would never work in practice, on the other hand. Software
technicians will sometimes blame commercial management for
being wilfully blind, but management is understandably con-
servative when it comes to critical systems: better the devil

you know.

So, on reflection, we should not be too disillusioned with
this cultural lag we find becween the demonstration of the
efficacy of a technique or principle in an experimental sit-

uation and its wholehearted adoption throughout the industry.

Application of the engineering/science relation to the field
of software 1s discussed by Kolence who proposes, rather than
the software engineering/computer science relation already
mentioned, the less loose relation of software engineering/

software physics.

11

