LNCS 4262

Klaus Havelund
Manuel Nuiez
Grigore Rosu
Burkhart Wolff (Eds.)

Formal Approaches
to Software Testing
and Runtime Verification

First Combined International Workshops
FATES 2006 and RV 2006

Seattle, WA, USA, August 2006

Revised Selected Papers

@ Springer

Klaus Havelund Manuel Nunez
Grigore Rosu Burkhart Wolff (Eds.)

Formal Approaches
to Software Testing
and Runtime Verification

First Combined International Workshops
FATES 2006 and RV 2006

Seattle, WA, USA, August 15-16, 2006
Revised Selected Papers

@ Springer

Volume Editors

Klaus Havelund

Jet Propulsion Laboratory

Laboratory for Reliable Software

4800 Oak Grove Drive, M/S 301-285, Pasadena, CA 91109, USA
E-mail: mn@sip.ucm.es

Manuel Nifiez

Universidad Complutense de Madrid

C/ Prof. José Garcia Santesmases, s/n.

Dep. Sistemas Informaticos y Computacién Facultad de Informatica
28040 Madrid, Spain

E-mail: mn@sip.ucm.es

Grigore Rosu

University of Illinois at Urbana-Champaign
Department of Computer Science

201 N. Goodwin, Urbana, IL 61801, USA
E-mail: grosu@cs.uiuc.edu

Burkhart Wolff

Information Security, ETH Ziirich

ETH Zentrum, CH-8092 Ziirich, Switzerland
E-mail: bwolff@inf.ethz.ch

Library of Congress Control Number: 2006937542

CR Subject Classification (1998): D.2, D.3, F.3, K.6
LNCS Sublibrary: SL 2 — Programming and Software Enginéering

ISSN 0302-9743
ISBN-10 3-540-49699-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-49699-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany -

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11940197 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4262

Preface

Software validation is one of the most cost-intensive tasks in modern software
production processes. The objective of FATES/RV 2006 was to bring scien-
tists from both academia and industry together to discuss formal approaches
to test and analyze programs and monitor and guide their executions. Formal
approaches to test may cover techniques from areas like theorem proving, model
checking, constraint resolution, static program analysis, abstract interpretation,
Markov chains, and various others. Formal approaches to runtime verification
use formal techniques to improve traditional ad-hoc monitoring techniques used
in testing, debugging, performance monitoring, fault protection, etc.

The FATES/RV 2006 workshop selected 14 high-quality papers out of 31
submissions. Each paper underwent at least three anonymous reviews by either
PC members or external reviewers selected by them. In addition to the 14 regular
papers, the proceedings contain two papers corresponding to the invited talks
by Wolfgang Grieskamp (Microsoft Research, USA) and Oege de Moor (Oxford
University, UK).

This was the first time that the two workshops, FATES and RV, were held
together. The success of this joint edition shows that the integration of these
two communities can be profitable for both of them. Previous editions of these
two events were held in the following places: FATES 2001 was held in Aal-
borg (Denmark) and FATES 2002 in Brno (Czech Republic). In both cases, the
workshop was affiliated with CONCUR. FATES 2003 and FATES 2004 were
held in Montreal (Canada) and Vienna (Austria), respectively, in affiliation with
ASE. FATES 2005 was co-located with CAV in Edinburgh (UK). Since 2003, the
FATES workshop proceedings have been published by Springer (LNCS series).
In parallel, RV 2001 was held in Paris (France), followed by RV 2002 in Copen-
hagen (Denmark), and RV 2003 in Boulder (USA). These first three editions
were affiliated with CAV. RV 2004 was held in Barcelona (Spain), affiliated with
TACAS 2004. Finally RV 2005 was held in Edinburgh (UK), co-located with
CAV. All previous editions of RV were published in Elsevier’s Electronic Notes
in Theoretical Computer Science. In addition, selected papers from RV 2001 and
RV 2002 were published in Springer’s journal Formal Methods in System Design,
in issues 24(2) (March 2004) and 27(3) (November 2005), respectively.

We would like to express our gratitude to all the authors and invited speakers
for their valuable contributions. We would also like to thank all members of the
FATES/RV 2006 Program Committee and the additional reviewers for their
efforts to accurately review the papers on time. Wolfgang Grieskamp supported
the organization of the workshop by providing a PC projector and the printouts
of these preliminary proceedings. In addition, Microsoft Research gave financial

VI Preface

support for the organization of the workshop. Finally, we would like to thank
the local organization of FLoC 2006 for their help.

September 2006 Klaus Havelund
Manuel Ninez

Grigore Rosu

Burkhart Wolff

Lecture Notes in Computer Science

For information about Vols. 1-4237

please contact your bookseller or Springer

Vol. 4345: N. Maglaveras, 1. Chouvarda, V. Koutkias,
R.W. Brause (Eds.), Biological and Medical Data Anal-
ysis. XIII, 496 pages. 2006. (Sublibrary LNBI).

Vol. 4337: S. Arun-Kumar, N. Garg (Eds.), FSTTCS
2006: Foundations of Software Technology and Theo-
retical Computer Science. XIII, 430 pages. 2006.

Vol. 4333: U. Reimer, D. Karagiannis (Eds.), Practial As-
pects of Knowledge Management. XII, 338 pages. 2006.
(Sublibrary LNAI).

Vol. 4331: G. Min, B. Di Martino, L.T. Yang, M. Guo, G.
Ruenger (Eds.), Frontiers of High Performance Comput-
ing and Networking — ISPA 2006 Workshops. XXX VII,
1141 pages. 2006.

Vol. 4329: R. Barua, T. Lange (Eds.), Progress in Cryp-
tology - INDOCRYPT 2006. X, 454 pages. 2006.

Vol. 4326: 8. Gobel, R. Malkewitz, I. Iurgel (Eds.), Tech-
nologies for Interactive Digital Storytelling and Enter-
tainment. X, 384 pages. 2006.

Vol. 4325:]. Cao, L. Stojmenovic, X. Jia, S.K. Das (Eds.),
Mobile Ad-hoc and Sensor Networks. XIX, 887 pages.
2006.

Vol. 4318: H. Lipmaa, M. Yung, D. Lin (Eds.), Informa-
tion Security and Cryptology. XI, 305 pages. 2006.

Vol. 4313: T. Margaria, B. Steffen (Eds.), Leveraging
Applications of Formal Methods. IX, 197 pages. 2006.

Vol. 4312: S. Sugimoto, J. Hunter, A. Rauber, A. Mor-
ishima (Eds.), Digital Libraries: Achievements, Chal-
lenges and Opportunities. XVIII, 571 pages. 2006.

Vol. 4311: K. Cho, P. Jacquet (Eds.), Technologies for

Advanced Heterogeneous Networks II. XI, 253 pages.
2006.

Vol. 4307: P. Ning, S. Qing, N. Li (Eds.), Information
and Communications Security. XIV, 558 pages. 2006.

Vol. 4306: Y. Avrithis, Y. Kompatsiaris, S. Staab, N.E.
O’Connor (Eds.), Semantic Multimedia. XII, 241 pages.
2006.

Vol. 4305: A.A. Shvartsman (Ed.), Principles of Dis-
tributed Systems. XIII, 441 pages. 2006.

Vol. 4304: A. Sattar, B.-H. Kang (Eds.), Al 2006: Ad-
vances in Artificial Intelligence. XXVII, 1303 pages.
2006. (Sublibrary LNAI).

Vol. 4302: J. Domingo-Ferrer, L. Franconi (Eds.), Pri-
vacy in Statistical Databases. XI, 383 pages. 2006.

Vol. 4301: D. Pointcheval, Y. Mu, K. Chen (Eds.), Cryp-
tology and Network Security. XIII, 381 pages. 2006.

Vol. 4300: Y.Q. Shi (Ed.), Transactions on Data Hiding
and Multimedia Security I. IX, 139 pages. 2006.

Vol. 4296: M.S. Rhee, B. Lee (Eds.), Information Secu-
rity and Cryptology — ICISC. XIII, 358 pages. 2006.

Vol. 4295: J.D. Carswell, T. Tezuka (Eds.), Web and
Wireless Geographical Information Systems. XI, 269
pages. 2006.

Vol. 4294: A. Dan, W. Lamersdorf (Eds.), Service-
Oriented Computing — ICSOC 2006. XIX, 653 pages.
2006.

Vol. 4293: A. Gelbukh, C.A. Reyes-Garcia (Eds.), MI-
CAI 2006: Advances in Artificial Intelligence. XX VIII,
1232 pages. 2006. (Sublibrary LNAI).

Vol. 4292: G. Bebis, R. Boyle, B. Parvin, D. Koracin, P.
Remagnino, A. Nefian, G. Meenakshisundaram, V. Pas-
cucci, J. Zara, J. Molineros, H. Theisel, T. Malzbender
(Eds.), Advances in Visual Computing, Part II. XXXII,
906 pages. 2006.

Vol. 4291: G. Bebis, R. Boyle, B. Parvin, D. Koracin, P.
Remagnino, A. Nefian, G. Meenakshisundaram, V. Pas-
cucci, J. Zara, J. Molineros, H. Theisel, T. Malzbender
(Eds.), Advances in Visual Computing, Part I. XXXI,
916 pages. 2006.

Vol. 4290: M. van Steen, M. Henning (Eds.), Middleware
2006. XIII, 425 pages. 2006.

Vol. 4289: M. Ackermann, B. Berendt, M. Grobelnik,
A. Hotho, D. Mladeni¢, G. Semeraro, M. Spiliopoulou,
G. Stumme, V. Svatek, M. van Someren (Eds.), Seman-
tics, Web and Mining. X, 197 pages. 2006. (Sublibrary
LNAI).

Vol. 4288: T. Asano (Ed.), Algorithms and Computation.
XX, 766 pages. 2006.

Vol. 4286: P. Spirakis, M. Mavronicolas, S. Kontogiannis
(Eds.), Internet and Network Economics. XI, 401 pages.
2006.

Vol. 4285: Y. Matsumoto, R. Sproat, K.-F. Wong, M.
Zhang (Eds.), Computer Processing of Oriental Lan-
guages. XVII, 544 pages. 2006. (Sublibrary LNAI).

Vol. 4284: X. Lai, K. Chen (Eds.), Advances in Cryptol-
ogy — ASIACRYPT 2006. X1V, 468 pages. 2006.

Vol. 4283: Y.Q. Shi, B. Jeon (Eds.), Digital Watermark-
ing. XTI, 474 pages. 2006.

Vol. 4282: Z. Pan, A. Cheok, M. Haller, R. W.H. Lau, H.
Saito, R. Liang (Eds.), Advances in Artificial Reality and
Tele-Existence. XXIII, 1347 pages. 2006.

Vol. 4281: K. Barkaoui, A. Cavalcanti, A. Cerone (Eds.),
Theoretical Aspects of Computing - ICTAC 2006. XV,
371 pages. 2006.

Vol. 4280: A.K. Datta, M. Gradinariu (Eds.), Stabiliza-
tion, Safety, and Security of Distributed Systems. XVII,
590 pages. 2006.

Vol. 4279: N. Kobayashi (Ed.), Programming Languages
and Systems. X1, 423 pages. 2006.

Vol. 4278: R. Meersman, Z. Tari, P. Herrero (Eds.), On
the Move to Meaningful Internet Systems 2006: OTM
2006 Workshops, Part II. XLV, 1004 pages. 2006.

Vol. 4277: R. Meersman, Z. Tari, P. Herrero (Eds.), On
the Move to Meaningful Internet Systems 2006: OTM
2006 Workshops, Part I. XLV, 1009 pages. 2006.

Vol. 4276: R. Meersman, Z. Tari (Eds.), On the Move
to Meaningful Internet Systems 2006: CooplS, DOA,
GADA, and ODBASE, Part IT. XXXII, 752 pages. 2006.

Vol. 4275: R. Meersman, Z. Tari (Eds.), On the Move
to Meaningful Internet Systems 2006: CooplS, DOA,
GADA, and ODBASE, Part I. XXXI, 1115 pages. 2006.

Vol. 4274: Q. Huo, B. Ma, E.-S. Chng, H. Li (Eds.), Chi-
nese Spoken Language Processing. XXIV, 805 pages.
2006. (Sublibrary LNAI).

Vol. 4273: 1. Cruz, S. Decker, D. Allemang, C. Preist,
D. Schwabe, P. Mika, M. Uschold, L. Aroyo (Eds.), The
Semantic Web - ISWC 2006. XXIV, 1001 pages. 2006.

Vol. 4272: P. Havinga, M. Lijding, N. Meratnia, M. Weg-
dam (Eds.), Smart Sensing and Context. XI, 267 pages.
2006.

Vol. 4271: F.V. Fomin (Ed.), Graph-Theoretic Concepts
in Computer Science. XIII, 358 pages. 2006.

Vol. 4270: H. Zha, Z. Pan, H. Thwaites, A.C. Addison,
M. Forte (Eds.), Interactive Technologies and Sociotech-
nical Systems. XVI, 547 pages. 2006.

Vol. 4269: R. State, S. van der Meer, D. O’Sullivan, T.
Pfeifer (Eds.), Large Scale Management of Distributed
Systems. XIII, 282 pages. 2006.

Vol. 4268: G. Parr, D. Malone, M. O Foghli (Eds.), Au-
tonomic Principles of IP Operations and Management.
X111, 237 pages. 2006.

Vol. 4267: A. Helmy, B. Jennings, L. Murphy, T. Pfeifer
(Eds.), Autonomic Management of Mobile Multimedia
Services. XIII, 257 pages. 2006.

Vol. 4266: H. Yoshiura, K. Sakurai, K. Rannenberg, Y.
Murayama, S. Kawamura (Eds.), Advances in Informa-
tion and Computer Security. XIII, 438 pages. 2006.

Vol. 4265: L. Todorovski, N. Lavra¢, K.P. Jantke (Eds.),
Discovery Science. XIV, 384 pages. 2006. (Sublibrary
LNAI).

Vol. 4264: J.L. Balcédzar, PM. Long, F. Stephan (Eds.),
Algorithmic Learning Theory. XIII, 393 pages. 2006.
(Sublibrary LNAI).

Vol. 4263: A. Levi, E. Savas, H. Yenigiin, S. Balcisoy,
Y. Saygin (Eds.), Computer and Information Sciences —
ISCIS 2006. XXIII, 1084 pages. 2006.

Vol. 4262: K. Havelund, M. Niifiez, G. Rosu, B. Wolff
(Eds.), Formal Approaches to Software Testing and Run-
time Verification. VIII, 255 pages. 2006.

Vol. 4261: Y. Zhuang, S. Yang, Y. Rui, Q. He (Eds.),
Advances in Multimedia Information Processing - PCM
2006. XXII, 1040 pages. 2006.

Vol. 4260: Z. Liu, J. He (Eds.), Formal Methods and
Software Engineering. XII, 778 pages. 2006.

Vol. 4259: S. Greco, Y. Hata, S. Hirano, M. Inuiguchi,
S. Miyamoto, H.S. Nguyen, R. Stowiriski (Eds.), Rough
Sets and Current Trends in Computing. XXII, 951 pages.
2006. (Sublibrary LNAI).

Vol. 4257: 1. Richardson, P. Runeson, R. Messnarz
(Eds.), Software Process Improvement. XI, 219 pages.
2006.

Vol. 4256: L. Feng, G. Wang, C. Zeng, R. Huang (Eds.),
Web Information Systems — WISE 2006 Workshops.
X1V, 320 pages. 2006.

Vol. 4255: K. Aberer, Z. Peng, E.A. Rundensteiner, Y.
Zhang, X. Li (Eds.), Web Information Systems — WISE
2006. X1V, 563 pages. 2006.

Vol. 4254: T. Grust, H. Hopfner, A. Illarramendi, S.
Jablonski, M. Mesiti, S. Miiller, P.-L. Patranjan, K.-
U. Sattler, M. Spiliopoulou, J. Wijsen (Eds.), Current
Trends in Database Technology — EDBT 2006. XXXI,
932 pages. 2006.

Vol. 4253: B. Gabrys, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part ITI. XXXII, 1301 pages. 2006. (Subli-
brary LNAI).

Vol. 4252: B. Gabrys, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part IT. XXXIII, 1335 pages. 2006. (Subli-
brary LNAI).

Vol. 4251: B. Gabrys, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part . LXVI, 1297 pages. 2006. (Sublibrary
LNAI).

Vol. 4250: HJ. van den Herik, S.-C. Hsu, T.-s.
Hsu, H.H.L.M. Donkers (Eds.), Advances in Computer
Games. XIV, 273 pages. 2006.

Vol. 4249: L. Goubin, M. Matsui (Eds.), Cryptographic
Hardware and Embedded Systems - CHES 2006. XII,
462 pages. 2006. -

Vol. 4248: S. Staab, V. Svatek (Eds.), Managing Knowl-
edge in a World of Networks. XIV, 400 pages. 2006.
(Sublibrary LNAI).

Vol. 4247: T.-D. Wang, X. Li, S.-H. Chen, X. Wang,

H. Abbass, H. Iba, G. Chen, X. Yao (Eds.), Simulated
Evolution and Learning. XXI, 940 pages. 2006.

Vol. 4246: M. Hermann, A. Voronkov (Eds.), Logic
for Programming, Artificial Intelligence, and Reasoning.
XIII, 588 pages. 2006. (Sublibrary LNAI).

Vol. 4245: A. Kuba, L.G. Nyiil, K. Palagyi (Eds.), Dis-
crete Geometry for Computer Imagery. XIII, 688 pages.
2006.

Vol. 4244: S. Spaccapietra (Ed.), Journal on Data Se-
mantics VII. XI, 267 pages. 2006.

Vol. 4243: T. Yakhno, E.J. Neuhold (Eds.), Advances in
Information Systems. XIII, 420 pages. 2006.

Vol. 4242: A. Rashid, M. Aksit (Eds.), Transactions
on Aspect-Oriented Software Development II. IX, 289
pages. 2006.

Vol. 4241: R.R. Beichel, M. Sonka (Eds.), Computer Vi-
sion Approaches to Medical Image Analysis. XI, 262
pages. 2006.

Vol. 4239: H.Y. Youn, M. Kim, H. Morikawa (Eds.),
Ubiquitous Computing Systems. X VI, 548 pages. 2006.

Vol. 4238: Y.-T. Kim, M. Takano (Eds.), Management of
Convergence Networks and Services. X VIII, 605 pages.
2006.

Table of Contents

Invited Talks

Multi-paradigmatic Model-Based Testing 1
Wolfgang Grieskamp

Aspects for Trace Monitoring, 20
Pavel Avgustinov, Eric Bodden, Elnar Hajiyev, Laurie Hendren,
Ondrej Lhotdk, Oege de Moor, Neil Ongkingco, Damien Sereni,
Ganesh Sittampalam, Julian Tibble, Mathieu Verbaere

Regular Papers

A Symbolic Framework for Model-Based Testing 40
Lars Frantzen, Jan Tretmans, Tim A.C. Willemse

A Test Calculus Framework Applied to Network Security Policies 55
Yliés Falcone, Jean-Claude Fernandez, Laurent Mounier,
Jean-Luc Richier

Hybrid Input-Output Conformance and Test Generation 70
Michiel van Osch

Generating Tests from EFSM Models Using Guided Model Checking
and Iterated Search Refinement o iiiiionin.. 85
Juhan-P. Ernits, Andres Kull, Kullo Raiend, Jiri Vain

Decompositional Algorithms for Safety Verification and Testing
of Aspect-Oriented Systems i 100
Cheng Li, Zhe Dang

Model-Based Testing of Thin-Client Web Applications 115
Pieter Koopman, Rinus Plasmeijer, Peter Achten

Synthesis of Scenario Based Test Cases from B Models. 133
Manoranjan Satpathy, Qaisar A. Malik, Johan Lilius

State-Identification Problems for Finite-State Transducers.............. 148
Moez Krichen, Stavros Tripakis

VIII Table of Contents

Deterministic Dynamic Monitors for Linear-Time Assertions............
Roy Armoni, Dmitry Korchemny, Andreas Tiemeyer,
Moshe Y. Vardi, Yael Zbar

Robustness of Temporal Logic Specifications.
Georgios E. Fainekos, George J. Pappas

Goldilocks: Efficiently Computing the Happens-Before Relation Using
LOCKSEtS ot
Tayfun Elmas, Shaz Qadeer, Serdar Tasiran

Dynamic Architecture Extraction
Cormac Flanagan, Stephen N. Freund

Safety Property Driven Test Generation from JML Specifications........
Fabrice Bouquet, Frédéric Dadeau, Julien Groslambert,

Jacques Julliand

Online Testing with Reinforcement Learning
Margus Veanes, Pritam Roy, Colin Campbell

Author Index

Multi-paradigmatic Model-Based Testing

Wolfgang Grieskamp

Microsoft Research, Redmond, WA, USA
wrwg@microsoft.com

Abstract. For half a decade model-based testing has been applied at Microsoft
in the internal development process. Though a success story compared to other
formal quality assurance approaches like verification, a break-through of the tech-
nology on a broader scale is not in sight. What are the obstacles? Some lessons
can be learned from the past and will be discussed. An approach to MBT is de-
scribed which is based on multi-paradigmatic modeling, which gives users the
freedom to choose among programmatic and diagrammatic notations, as well as
state-based and scenario-based (interaction-based) styles, reflecting the different
concerns in the process. The diverse model styles can be combined by model
composition in order to achieve an integrated and collaborative model-based test-
ing process. The approach is realized in the successor of Microsoft Research’s
MBT tool Spec Explorer, and has a formal foundation in the framework of action
machines.

1 Introduction

Testing is one of the most cost-intensive activities in the industrial software develop-
ment process. Yet, not only is current testing practice laborious and expensive but often
also unsystematic, lacking engineering methodology and discipline, and adequate tool
support.

Model-based testing (MBT) is one of the most promising approaches to address these
problems. At Microsoft, MBT technology has been applied in the production cycle since
1999 [1,2,3.4,5]. One key for the relative success of MBT at Microsoft is its attraction
for a certain class of well-educated, ambitious test engineers, to which it is one way to
raise testing to a systematic engineering discipline.

However, at the larger picture, an estimate based on the number of subscriptions to
internal mailing lists for MBT would count only about 5-10% of product teams which
are using or have tried using MBT for their daily tasks. While these numbers can be
considered a success compared to other formal quality assurance approaches like veri-
fication, they are certainly not indicating a break-through. So what are the obstacles in
applying MBT, and how can a larger group of users be attracted to the technology?

This paper first makes an attempt to answer this question, based on feedback from
the user base of the Spec Explorer tool [5], its predecessor AsmL-T [3], and other
internal MBT tools at Microsoft. The major issues, apart of the ubiquitous problem in
the industry that people do not have enough time to try out new technology and educate
themselves, seem to be the steep learning curve for modeling notations together with
the lack of state-of-the-art authoring environments, missing support for scenario-based
(interaction-based) modeling, thus involving not only the test organization but also other

K. Havelund et al. (Eds.): FATES/RV 2006, LNCS 4262, pp. 1-19, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

2 W. Grieskamp

stakeholders in the process, poor documentation of the MBT tools, and last but not least
technical problems like dealing with state explosion, fine-grained test selection, and
integration with test management tools.

The paper then sketches a new model-based testing environment which is currently
under development at Microsoft Research and attempts to overcome some of the ob-
stacles. The environment, called “Spec Explorer for Visual Studio” (for short, SEys),
tries to address the identified challenges by providing a full integration into the develop-
ment environment of Visual Studio, using a multi-paradigmatic approach to modeling,
allowing to describe models on different levels of abstraction, using scenario and state
oriented paradigms as well as diagrammatic and programmatic notations, and enabling
the combination of those diverse artifacts for a given modeling and testing problem.

SEvs is internally based on the framework of action machines [6,7], which allows for
uniform encoding of models which can stem from a variety of notations, and to combine
and relate them using various compositions. The action machine framework supports
the representation of models with symbolic parts in states and actions, which gives rise
to the expressive power of defining partial models on a higher level of abstraction and
compose them with lower-level models.

This paper is organized as follows. Sect. 2 describes lessons learned in applying
MBT at Microsoft and draws some conclusions. Sect. 3 gives a high-level overview on
the approach of the SEys tool using examples. Sect. 4 gives a summary of the formal-
ization of the underlying concepts, and Sect. 5 concludes.

2 Model-Based Testing in Practice: Lessons Learned

MBT has a long application tradition at Microsoft, and various tools have been and are
in use. The first tool, the Test Modeling Toolkit (TMT), was deployed in 1999, and is
based on extended finite state machines (EFSM) [1]. Microsoft Research deployed two
tools, AsmL-T in 2002 [3] and Spec Explorer in 2004 [5], both using executable spec-
ification languages based on the the abstract state machine paradigm (ASM) [8] as the
modeling notation. Other internal tools which have not been published are also around.
The general mailing alias used for internal discussion of MBT issues at Microsoft cur-
rently exceeds 700 members.

All these tools, though quite different in details and expressiveness, share some com-
mon principles. Models are described by guarded-update rules on a global data state.
The rules describe transition between data states and are labeled with actions which cor-
respond to invocations of methods in a test harness or in the actual system-under-test
(SUT). Rules can be parameterized (and the parameters then usually also occur in the
action labels). A user provides value domains for the parameters, using techniques like
pairwise combination or partitioning. In the approach as realized by AsmL-T and Spec
Explorer, the parameter domains are defined by expressions over the model state, such
that for example they can enumerate the dynamically created instances of an object type
in the state where the rule is applied.

A very simple example to demonstrate the basic concepts as they appear in Spec
Explorer today is considered. The model describes the publish-subscribe design pattern
which is commonly used in object-oriented software systems. According to this pattern,

Multi-paradigmatic Model-Based Testing 3

class Publisher { class Subscriber {
Set<Subscriber> subscribers = Set{}; Seg<object> mbox = Seaq{};
[Action(ActionKind.Controllable)] [Action(ActionKind.Controllable)]
Publisher () {} Subscriber (Publisher publisher)
[Action (ActionKind.Controllable)]
void Publish (object data) publisher.subscribers += Set{this};
foreach (Subscriber sub [Action(ActionKind.Observable)]
in subscribers) void Handle (object data)
sub.mbox += Seg{data}; requires mbox.Count > 0 &&
} mbox.Head.Equals (data) ;
}

mbox = mbox.Tail;

}
}

?02.Handle(foo
?01. Handle(foo)

o0.Publish(foo)

?02.Handle(foo)

?0l.Handle(foo)

Fig. 1. Publisher-Subscriber Model

various subscriber objects are registered with a publisher object to receive asynchronous
notification callbacks when information is published via the publisher object (in fact,
the subscribers can dynamically register and unregister at a publisher, but this aspect is
simplified here.) Thus this example includes dynamic object creation as well as reactive
behavior.

The model is given in Fig. 1 (top). The state of the model consists of publisher and
subscriber instances. A publisher has a field containing the set of registered subscribers,
and a subscriber has a field representing the sequence of data it has received but not yet
handled (its “mailbox”). The model simply describes how data is published by deliv-
ering it to the mailboxes of subscribers, and how it is consumed by a subscriber in the
order it was published. The precondition of the handling method of the subscriber en-
ables it only if the mailbox is not empty, and if the data parameter equals to the first
value in the mailbox. Note that the Handle method is an observable action, which
comes out as spontaneous output from the system under test (SUT).

Fig 1 (bottom) shows an excerpt from the state graph generated by Spec Explorer
from this model. This kind of graph corresponds to an interface automaton [9]. In this
fragment, one publisher and two subscribers are configured (the state graph omits the
configuration phase). From state S3, a Publish invocation is fired, leading to state S4,
which is an observation state where the outgoing transitions are observable actions. The
meaning of an observation state is that the SUT has an internal choice to do one of the
outgoing transitions, as opposed to a control state (S3) where it must accept all of the
outgoing transitions. Thus, effectively, the model gives freedom to an implementation
to process the subscribers of a publisher in any given order.

4 W. Grieskamp

In order to generate the state graph, the model was augmented with further infor-
mation: the parameters passed to the Publish method have been specified (here,
"foo"), the number of publishers and subscribers to be created has been bounded,
as well as the number of messages in the mailbox of a subscriber.

Such state graphs are then input to traversal algorithms to generate a test suite which
can be executed offline, or are dynamically traversed using online/on-the-fly testing.
For both cases, the test execution environment takes care of binding object values in the
model to objects in the implementation, as well as queuing asynchronous observable
action invocation events in the SUT for consumption by the model. For details, see [5].

In practice, models written with Spec Explorer are significantly larger than this sim-
ple example; yet they are rarely on the scale of real programs. In the applications at
Microsoft, models typically introduce about 10 to 30 actions, with up to 2000 lines of
model code, in exceptions over 10000 lines. Yet, these models are able to test features
with a code-base which is larger by an order of magnitude or more. This stems from the
level of abstraction chosen in modeling. Model-based testing is used for a wide range
of application types, including user interfaces, protocols, windows core components,
frameworks, device drivers, and hardware abstraction layers.

While in general successfully used in practice, the technology of Spec Explorer, as
well of the other available tools at Microsoft, raises some challenges which hinder wider
adoption. These will be discussed in the remainder of this section.

2.1 The Modeling Problem

Authoring. Computer folklore says: “every editor is better than a new editor”. Though
clearly this statement is sarcastic, one should not underestimate its wisdom. The author
of this paper, for example, used to apply the vi editor (a great relict of very early Unix
times) for his programming over many years, even though on the development plat-
form Visual Studio was available, which provides automatic indentation, incremental
compilation, context-sensitive completion, refactoring, and many more nice features.

When initially rolling out one approaches’ favorite modeling notation to end users,
the gravity of habits is even stronger: users are asked to use a new language in an
authoring environment which usually does not provide the convenience features they
are acquainted with from modern environments.

Notations have perhaps become less important today than the environments which
support them. This at least applies to users which are heavily using these modern devel-
opment environments — among which are most younger testers and developers. It might
apply less to other stakeholders (like the author of this text, which is still using a vi
emulation mode under Emacs to write this document in I5TEX).

The lesson learned is that if one comes up with a new notation, one should better be
sure that either the users of that notation do not care about modern authoring support,
or one should match this support. The later is unfortunately not trivial. The effort for
decent authoring support for a language is probably an order of magnitude higher than
providing its compiler.

Executable Specifications vs Programming Languages. The first generation of the
Microsoft Research MBT tools was based on the Abstract State Machine Language

Multi-paradigmatic Model-Based Testing 5

(AsmL), a high-level executable specification language, which integrates concepts from
functional programming languages and specification languages like Z, B and VDM.
Though the basic concepts of this language seem to be simple and intuitive (it uses
a “pseudo-code” style notation and avoids any mathematical symbols), apart of some
stellar exceptions, for most testers the learning curve was too steep (see [4] for a dis-
cussion).

Testers struggled with concepts like universal and existential quantification and set
comprehensions. Under the assumption that the problem was not the concept itself but
perhaps the unfamiliar way in which it was presented, the next generation, Spec Ex-
plorer, offered in addition to AsmL the Spec# notation, which disguised the high-level
concepts in C# concrete syntax. Though this approach was more successful, the basic
problems remained. Typically, beginners and even intermediate levels in Spec# prefer
to write a loop where a comprehension would be much more natural and concise.

This phenomena is not just explained by the inability of users. It is more the un-
willingness to learn many new concepts at the same time, in particular if they are not
obviously coherent. Confronted with a new technology like MBT and the challenges
to understand the difference between model and implementation and finding the right
abstraction levels, having in addition the challenge to learn a new language, is mastered
only by a minority.

Some people argue that a high-level notation which differs from the programming
notations might support identifying different levels of abstractions, as they are essential
for modeling. The AsmL and Spec# experiences do not confirm this, at least in the
beginning of the adoption process. Rather, it seems that if the notation is mastered after
some time, a misleading conceptualization takes place: abstraction is identified with
notation, which after all is only syntactic sugar (in the case of executable specification
languages). Someone who already masters the abstraction process will certainly benefit
from a more concise way to write things down. But for others, the notation can be just
a further roadblock in mastering the technology.

The conceptual distance between programming languages like C# and executable
specification languages like Spec# is shrinking steadily. The new forthcoming C# ver-
sion 3.0 will contain — in addition to the relatively declarative notational features C#
has already now — support for comprehension notations (as part of the LINQ project
[10]). When new language concepts are build into main-stream programming languages
like C# or Java, a campaign is kicked off. Manufactures provide early technology pre-
views, blogs and message boards are filled, books are written or newly edited, and so
on. After some time, the concepts which might have appeared strange to the average
programmer are familiar to many. Why trying to compete with this?

The lesson learned here is that it appears wiser not to mix evangelizing executable
specification languages with the very core of model-based testing concepts. This should
not mean that those notations do not have a place in MBT — they are indeed rather impor-
tant. It just means that users should not be forced to use a new notation and environment
in order to write their first models. Let them use existing programming notations and
their authoring environments if they like. The core of a model-based testing approach
and tool should be agnostic about this choice; it should be multi-paradigmatic.

6 W. Grieskamp

Scaling Up to Model-Based Development. One of the promises of MBT is to be an en-
try door for model-based development. In course of applying MBT at Microsoft, several
test teams have attempted to incorporate program managers, domain experts, business
analysts, and the like into the modeling process. This has not been very successful so
far, though some exceptions exist.

One interesting observation is that executable specification languages like AsmL,
which provide a high-level pseudo-code style notation, are more attractive to those
stakeholders than programming-oriented notations like Spec#. AsmL had more users
authoring system models, compared to just models for test, whereas with the introduc-
tion of Spec# and Spec Explorer, these applications diminished. This is a strong argu-
ment to continue supporting high-level executable specification languages like AsmL
for MBT (just do not make them the only choice).

However, it seems that the main obstacle here is not the language but the model-
ing style. AsmL, Spec#, or any of the other MBT approaches used at Microsoft are
not attractive in the requirements phase since they are state-based instead of scenario-
based. In this way they represent a design by itself — even if on an higher-level of
abstraction. These high-level designs are well suited for analysis, but less well for un-
derstanding and communicating usage scenarios. Thus to incorporate stakeholders from
the requirements league, scenario-based modeling must be supported.

Scenarios are also heavily used inside of the test organizations themselves. For ex-
ample, test plans are commonly used at Microsoft to describe (in an informal way) what
usage scenarios of a feature should be tested. These test plans, as well as the scenarios
coming from the requirements phase, are intrinsically partial, omitting a lot of details,
in particular oracles, parameter assignments, and so on. It is the job of the test engineers
to “implement” these test plans.

The challenge for MBT to scale up to model-based development is the support of
both the state-based and the scenario-based paradigm in one approach, where it is pos-
sible to combine (compose) models coming from those different sources. For example,
a scenario might provide the control flow, and a state machine the oracle, and the com-
position of both produces an instantiated test suite.

How should scenario-based models be written down? In [11], a programmatic ap-
proach based on Spec# is suggested. While this approach is useful in some instances,
diagrammatic approaches like activity charts or interaction charts look more promising,
as far as stakeholders from the requirements phase should be involved. Because of the
wealth of literature available, it seems wise to orient toward UML 2.0 when support-
ing diagrammatic notations, instead of inventing ones own. But again, the choice of the
notation should rot be part of the core of an MBT approach and tool.

Education and Documentation. For more than a decade, proponents of formal meth-
ods claim that the major problem in adoption is education. In particular universities are
in charge of providing better preparation for those technologies. However, as long as
there are no practical applications and tools around, only a minority of students will
subscribe to this content.

Until then, the adoption problem must be solved in the field. To that end manage-
ment support is the essence. At Microsoft, the most successful applications of MBT
emerged in areas where the technology was pushed from management level by making

Multi-paradigmatic Model-Based Testing T

time resources available for the adoption phase. This has to go in combination with
introduction classes and seminars, and — most important — good documentation and
samples. See [4] for a discussion.

2.2 The Technology Problems

State Explosion. MBT is known to easily generate a huge amount of tests from even
small models. But this turns out to be more a problem in practice than an advantage,
commonly referred to as the “state explosion problem”. In fact, this is the main concern
mentioned by users of MBT tools at Microsoft.

The state explosion problem has a number of facets. First, the time required to run a
test-suite is a significant cost factor. For example, at Microsoft, developers need to run
so-called “basic verification tests” (BVT) before they can submit sources to a shared
depot. The time required to run the BVT is important for development productivity. If
BVTs require hours to finish, developers tend to submit their changes in larger time
intervals, which raises problems with the integration of their changes with other devel-
opers changes.

This is also a reason why stochastic on-the-fly/online testing is not the solution for
the state explosion problem. It is not realistic to run millions of tests “over night” in
the standard development process. Indeed, this kind of testing has its proper use in test
deployments which run in test labs asynchronously with the development process and
in larger time intervals.

Test Selection. The notion of test selection is generally used in the MBT community
to name the process of selecting some representative set of tests from the model. Thus
it should provide the tools to overcome the state explosion problem. Test selection tra-
ditionally covers graph traversal techniques which can be applied to models which are
boiled down to some finite state machine representation, as well as techniques for gen-
erating parameters of tested actions, like pairwise combination, partitioning, and so on.
In the context of models which have an unbounded state space, like Spec Explorer mod-
els, test selection can also include bounds, filters, state grouping, and other techniques
to prune the state space.

While these techniques are mostly automated and well understood, it is a regular
complain of MBT users at Microsoft that they have not enough fine-grained control
over the test selection process. For example, a typical user problem is to choose the
set of tests from the model where during some initialization phase an arbitrary path is
sufficient, in the operation phase paths should be chosen such that all transitions are
covered, and in the shutdown phase again an arbitrary path is good enough. MBT tools
need to support this kind of fine-grained control over the test selection process.

Some tools support defining so-called test purposes which are combined with the
model to slice some desired behavior, using special notations for that [12,13]. Instead
of introducing a further notation for describing test purposes, it looks desirable to use
models to express test purposes and view the test selection problem with test purposes
as a model composition problem. Test purposes then fall together with test plans and
requirement scenarios, as discussed previously. Even more than for those applications,
models used as test purposes must allow to express partial behavior which omits many
details.

