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Preface

With the rapid growth of integration scale of VLSI chips and the present need
for reliable computers in space exploration, fault diagnosis and fault toleran-
ce have become more important than before, and hence reveal a lot of interest-
ing topics which attract many researchers to make a great number of contribu-
tions to this field. In recent years, many new and significant results have
been achieved. A quick scan over the proceedings of the conferences on fault-
tolerant computing and design automation as well as on testing will convince
the reader of that. But unfortunately these achievements have not been entire-
ly reflected in the textbooks, so that there seems to be a gap for the new
researcher who already has the basic knowledge and wants to begin research in
this area. As a remedy for this deficiency, this book is intended for begin-
ners, especially graduate students, as a textbook which will lead them to the
frontier of some branches of the fault-tolerant computing field.

The first chapter introduces the four-valued logic B, and its applica-
tions. In 1966 Roth first proposed this four-valued logic as a technique to
generate tests for logical circuits, but this work did not concern the mathe-
matical basis of By itself. Here in this book it is considered in an abstract
way, related to the representations of boolean functions in B,, the computa-
tion of the four components of the functions, called the STAR algorithm, which
plays the same role as boolean differentials and boolean differences, and also
solving equations in B,. The applications depend upon the explanations of
these four elements: The first explanation can be used to derive the test set
for combinational and sequential circuits, which has some advantages over
existing techniques. The second explanation leads to hazard identification and
then to dynamic test generation, which can detect most of the statically
undetectable faults. The third explanation is the transition logic concerning
the propositional and predicate calculus, as well as logical inferences, which
can more or less reflect the dynamic logical behavior of the objective world.

The fault-diagnosis problem at the system level was formulated by Prepa-
rata, Metze and Chien in 1967. Since then a lot of work has been done for
different models. This is summarized in Chap. 2 in the extensions along four
directions. In particular, this theory is generalized to society diagnosis,
i.e., to distinguish the guilty persons from the innocent ‘and the uninten-
tional liars by analysing their mutual testimonies. Some of these models are
studied in detail as examples to show the scheme of proofs. Further, a simple
analog circuit is taken as an example to illustrate how the system diagnosis
theory has been applied to analog networks in recent years, and this will
inspire people to apply this theory to the problem of multiple-fault diagnosis
in logical circuits as well.



VI

Design for testability is a hot project in the testing field, which can
alleviate test generation and hence save computer time. But how to define the
testability measure is still a problem. Chapter 3 lists the postulates for an
ideal definition of testability measure and gives an evaluation of some exist-
ing definitions. It then introduces the synthesis problem for testability,
which is more important in the designing phase. The automatic design for
testability via testability measures is studied in detail at gate level, and
the design at module level is also outlined.

The NMR (N Modular Redundancy) technique is widely used in fault-tolerant
design. A new technique, NMRC (NMR with comparing), is introduced in Chap. 4,
which contains the other NMR techniques as its special cases. Three optimal
designs (Vertex-Edge, Edge-Vertex and Tm optimal) are studied in detail.

In recent years, multiprocessor systems and computer networks have become
widely used, in which processors or computers are connected by buses with or
without common memories, dedicated communication channels, crossbar networks
or switching networks; their reliability problem should be well considered.

Chapter 5 studies the fault tolerance of an interconnection switching
network formed by PB-elements and other elements. Two special types, i.e., ISE

and C? e which provide the dynamic full access property, are taken into

account. The number of faulty elements tolerated by the network can be in-
creased by modifying the design without any penalty of additional hardware or
time-delay. In addition an RFT network which provides the full access property
and tolerates a larger class of fault models is also studied.

For multibus-multiprocessor systems, there seems to be lacking a unified
mathematical tool which can be used to study them in depth. In Chap. 6, hyper-
graphs are used to represent multibus systems, so that the fault tolerance
problem of the system corresponds to the connectivity problem of a hypergraph.
An important inequality for the connectivities is proved and the best connec-
tivity problem is solved with the aid of Balanced Incomplete Block (BIB)
designs of combinatorics. This BIB design is generalized to Weak Balanced
Incomplete Block designs (WBIB), which are new in combinatorics. Thus many
optimal fault-tolerant system designs are obtained which are better than the
previous ones. Based on this theory, a lot of work could be done in the fu-
ture; this is laid before the reader.

TMR (Triple Modular Redundancy) system are widely used to achieve fault
tolerance for single faults. If single faults occur successively in a systenm,
there exists a fault-tolerant center with the fault-tolerant degree which is
the maximum number of sequential faults tolerated. Hence the sufficient condi-
tions of the optimal design for sequential faults are introduced.

References are listed, and some long proofs as well as tedious techniques
are moved to the appendices after the chapters.

All the chapters are independent, and each chapter is self-contained, so
the reader can read the book in any order. But it is necessary to have some
basic knowledge of boolean algebra, graph theory, linear integer program-
ming, testing and fault tolerance. Of course the reader should also be acquain-
ted with the ideas of complexity of algorithms and NP-completeness.



VII

This book can be regarded as the summary of the work done during the last
ten years in the research group on fault tolerance in Chongqing University,
the People’s Republic of China. This material had been delivered twice as
lectures in Chongqing University as a seminar for graduate students and also
in Karlsruhe University, the Federal Republic of Germany, as a 24-hour course.
This book was written based on these experiences.

The author is grateful to Prof. W. Gorke and Prof. G. Hotz, who read the
manuscript carefully and made some important suggestions. Also thanks are
given to Dr. M. Marhofer for his help in handling the manuscript. The author
heartily thanks all colleagues in his research group; without their hard work
and their original papers this book would have been impossible. Special thanks
are given to Mr. Y.N. Chen who wrote the first drafts of Chap. 4 and Chap. 7,
Dr. R. Yao, who wrote the final part of Chap. 6 and also Mr. F.J. Li, Mr. L.D.
Zhou and Mr. Y.D. Shen for their typing. Special thanks should be given to my
wife Prof. Heyue Wang for her typing the most part of this book.

Since fault tolerance is a wide research area, a lot of important contri-
butions could not be included in one short book. Besides, there may be some
mistakes or deficiencies in the book which have not been discovered by the
author. If the reader would care to point these out, the author would appreci-
ate it very much, and will make corrections in a revised version.

September 1991 Tinghuai Chen
Chongqing
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Chapter 1
Four-Valued Logic and Its Applications

Four-valued logic is generalized from the traditional binary
logic in order to describe the dynamic logical behavior of
objective phenomena. We are going to study its mathematical
features, especially the so-called STAR algorithm, the
technique for deriving its component expressions, then to
show how it can be applied to the static and dynamic test
generations for both combinational and sequential circuits as
well as to transitional logics.

1.1 Introduction

The traditional binary logic B, is well known to every computer scientist. It
contains two logic states, "1" and "0" which can be used to describe the static
state of objective phenomena, for example, the "true" or "false" state of a
proposition, "high" or "low" voltage of a wire and "normal" or "faulty" state
of a piece of equipment. But "steady” is only so in a relative sense. All
objects are absolutely in a moving, changing, or transition state. In order to
describe these transitional phenomena the traditional binary logic B, should
be extended to some new logic.

In 1965 Roth proposed his well known D algorithm to generate tests for a
combinational logical circuit, in which each wire is associated with one of

the four values, 6,1,D and D; where 6 or I denotes the state that this wire
takes a steady logic value "O" or "1" in the common sense; D means this wire
takes the logical value "1" when the circuit is normal and value "O" when a

fault occurs in the circuit; conversely D means it takes "0" when the circuit
is normal and "1" when a fault occurs. Using this system and a table driven
technique, Roth successfully derived tests of a circuit but did not take into
account the mathematical foundation of the system.
We are going to study this kind of four-valued logic from an abstract
point of view and find out some other potential applications of this logic.
Since four-valued logic B, is generalized from B,, we might seek inspira-



tion by reviewing how complex number theory is generalized from real number
theory.
1. Definition: A complex number a is defined by an ordered pair of real

numbers (a,,a,). The addition and dot multiplication are operated in component
-wise
a+bs= (a;+b, ,ax+b3), asb = (a;*by,az°bz).
2. Vector form FEach complex number can be expressed by a vector form:
a =a; +az-i. and this form is useful in computation.
3. Components It is important to have a technique to derive the real part
R(a) = a, and the imaginary part I(a) = a, when a is a complex function.

Similarly we can define B, in terms of B,, find the vector form and then
propose a technique to derive the expressions of the components, which is
called the STAR algorithm. This theory will be introduced in Sects. 1.2-1.5,
while the applications will be handled in Sects.1.6-1.10.

1.2 Mathematical Basis

1.2.1 Four-Valued Boolean Algebra B,

Let B, = <B,, "e", "+", "-"; 0, 1>
be the binary logic B, with three logical operations "o, "4+" and "—" over two
logical elements O and 1.

Definition 1.1 The four-valued logic B, is defined to be the direct

(cartesian) product of B, i.e.
B4 = BZXBZ -

From discrete mathematics, B, is also a boolean algebra, and if x, ¥y € B,.

then x and y can be expressed by ordered pairs
x = (%1.X2) y = (¥1.52).
where x,, X, y; and y> € B, and the logical operations are performed compo-
nent by component, i.e.
Xy (x1°¥1, X2°Y2),
X+y (X1 + ¥1. X2 + ¥2).

x = (X1.X2)-
Since B, has only two elements, the four elements of B, are simply

6 = (0,0)
I=(1,1)
D = (1,0)
D = (0.1)

and the operations are shown in Table 1.1,



Table 1.1
x X . e I D D + e I D D
6 I e e e 6 e 2} e I D D
I 2] I 2] I D D I I 1 1 I
D D D 0 D D 0 D D I D I
D D D 0 D 0 D D D I 1 D

1.2.2 Boolean Expressions

Definition 1.2 Boolean expressions are defined recursively by the follow-

ing

1) Constants ‘1’ and ‘O’ are expressions;

2) Variables are expressions;

3) The operations ‘+’, ‘-’ and ‘—' on expressions finite times are
expressions;

4) only those defined in 1), 2) and 3) are expressions.
Boolean expressions can be used to describe the structures of combinational
logical circuits and are denoted by A(xy,***,xp), B(x;,***.x,) and so on.

Definition 1.3 Two expressions A and B are equivalent, denoted by

A(xy,+*.xn) = B(X4,***,%p),
if one of them can be transformed into the other by using the boolean identi-
ties finitely many times.

The following theorem can be found in any book on discrete mathematics.

Theorem 1.1 A(x,,**+,x,) = B(x1,°°*,xp) iff A(xy,**,x5) = B(x4,***,xn)
for Vx;€ %, where % is any boolean algebra.

Corollary 1.1 A(x4,%**,xn) = B(x,,**+.xp) for V Xy € By iff
A(xy.***,xpn) = B(xy,°**,x,) for Vx;y € 3 (in a special case, % is simply
B,).

Example 1.1 Absorption Law: If x + X*y = x holds for V x, y € B,, then it
also holds for x, y € B,. Therefore we have identities

D + Dy =D, and x + x°D = x.

1.2.3 Mapping B? - B, and Boolean Functions

Let F(x;,***,%xp) be the mapping B? - B,. Since there are 4" points in BE, each

of them can be associated with one of the four values in B,, and the total
n

number of mappings is |{F(x1,'°-,xn)}| =4t

If f(x,,***,xn) is any boolean expression, when V x; € By, then f € B,.

f(x4,**+.xp) 1is a special mapping BB - B4, called the boolean function, which
can be used to describe the input-output behavior of a combinational logical



n
circuit. We know that the number of boolean expressions is 22 , and hence
n
2
|{f(X1:“‘:xn )}l =27 .
Therefore the set of boolean functions is only a subset of the mappings Bz -
B4.
In order to study the property of these mappings and boolean functions, it
is adequate to find some better representations for B,.

1.2.4 Vector Form

Definition 1.4

For any x € B, there exist four variables x°, x', x* and X* € B,, such
that

»*

x =08 in B, iff x° =1and x' = x* = X" = 0 in B,,

x =1 in B, iff x' =1and x° =x* =%X* =0 in B,,

x =D in B, iff x*=1and x° =x' = x* =0 in B,,

x =D inB, iff X*=1and x° = x' = x* = 0 in B,. (1.1)
then x € B, is called a vector and x°, x', x™* and %* € B, 1its components.

Obviously these components satisfy

Completeness XX+ xP XX =1 and (1.2)

Orthogonality x!+x? =0 for i # j and x!, x' € { x°, x', x%, X}, (1.3)
Since B, C B, ,the following expression is legal and is equal to x in any
case: x = x%+8 + x'-I + x*-D + x*-D. (1.4)
Definition 1.5 Formula (1.4) is called the vector form of x. If the coef-

ficients in (1.4) satisfy completeness and orthogonality, (1.4) is said to be
normalized.

For the non—normalized vector form we have the following
Theorem 1.2 If vector form x = p*@ + q*I + r+D + s-D is non—normalized,
then the vector form x = P+6 + Q<I + R+D + S-D, where

P=gqg'rs, Q=q+r's, R=ger*s, S=gq-res, (1.5)
is the corresponding normalized vector form.
It is easy to check the completeness and the orthogonality of this coeffi-
cient set {P,Q,R,S} and to check the equality of these vector forms.

Example 1.2 Let x = a*D + b-D. Here Pp=9q=0, r=a, s =b. Using expres-
sion (1.5) to normalize it, we have

P = a<b, Q = a*b, R = a-b, S = a-b.

Thus the normalized form is x = a-b*0 + a*beI + a*b*D + a-b-D.



1.2.5 Canonical Forms

Let F be a mapping BE - B, . We are going to find a representation form for F.
A point of the space BE corresponds to an assignment of one of the values
8, I, D, and D to the input variable x;, i = 1,*+-,n, which is equivalent to

x =1, x} =1, x{ =1 or x; = 1 respectively and i = 1,*++,n. In other words
this space point can be represented by xi1'°'xin =1, where j;.**°*,jp €
{0,1,*,_*}. This space point is mapped by F to one of the values 6, I, D, and
D. Thus F can be represented by the following logical sum
Fe () oBtadme + () xdteeadmI + () afteeadMD + () xitee gD

The first sum containing the common factor 6 can be ignored, and the second
sum can be divided into two sums on account of I = D + D. Hence we have
F=() it + () Xiteeexin)p (1.6)

1 % T
}

where the superscripts ky, 15 € {°, for i = 1,°*-,n and the first 2
take over all the inputs which cause F = 1 and D, the second Z over all the

inputs which cause F = 1 and D.
Definition 1.6 Formula (1.6) is called the canonical sum-of product form
of the mapping F, and each term in (1.6) is a minterm.

We can prove that every mapping B? - B, is uniquely expressed by its
canonical sumof—product form. Using this canonical form we can also prove

that the set of all mappings B? - B, forms a boolean algebra B44n and hence

all the boolean identities are applicable. Besides, the set of all the boolean
functions of n variables forms a sub—boolean algebra B22n. We leave these

proofs to the readers as exercises.

1.2.6 Expressions For Boolean Functions

Suppose x = x%0 + x'+I + x*D + x*-D

and vy =y%8 +y'eI + y*-D + y*-D

are normalized vector forms which can be transformed into canonical forms
x=(x"+x*)D+ (x*+x")D
y=(y +y")D+ (y +y )D

Then the AND of x and y by Table 1.1 is



Xy
( xiyi + xiy* + X)(yl + xxy’(’ )'D + ( le* + Xl}_’* + X_* + X*? ).ﬁ i
Using the normalization formula (1.5) and after simplification we have the
final normalized vector form

(x" +x*)(y' +y ) D+ (x*+X )-(y' +7)D
1
y

o 3

+ XY+ X'y)0 + xtylel (1.7)
* (XY 4 XY+ YY)D+ (K4 XY+ 5D
Similarly the OR of x and y is

xy = (x° +y

x +y =x°°0 + (x* +y* + Y+ §*y*)°1 (1.8)
+ (Y% + X%+ XY D+ (Y0 4+ xOF + X)D.
The NOT of x is X = x'+8 + x°I + X*D + x*-D (1.9)
From the vector forms (1.7), (1.8) and (1.9) we can list out their correspond-
ing component forms as follows.
Theorem 1.3 The components of an AND function are

(xy )% = x7 + 3% + XY+ Oy

( x.y ):( = X’(yl k3 2

( x°y )y =xy' + xiy + Xy

(xy ) =Xy + x'¥ + 5% (1.10)

Theorem 1.4 The components of an OR function are
(x+y)°=x%°

(x+y )=ty &9+ 0y
(x+y ) =x7y" + x%" + x™y
(x+y Y=x%" + x°7 + Xy (1.11)

( = )o x!

(x)'=x°

(x ) =%x*

(x ) =x* (1.12)

Since ( x )* = X*, we can take off the parenthesis, and that is why we use
the notation " ~* " for the fourth component of a vector. In order to memorize

these formulae, we can interpret them as follows. x*y, x+y, and X are outputs
of the AND, OR, NOT gates respectively with inputs x and y. wo, w', w*, and

w" can be regarded as the voltage of a wire w such that, say,
w : "low"” voltage __ , wh: "high" voltage

w": "step-down transition"” ~_ ., w: "step-up transition” -/ .

Thus the third formula of (1.10) can be so interpreted that the output of
the AND gate is ™\_ if and only if one of the inputs x or y is —\_, while the
other is at high voltage or both of them are " \_ .



STAR Algorithm The technique for deriving the expressions of the compo-
nents of a given boolean function is called the STAR algorithm. Uaually there
are three methods. Since a boolean function is formed by applying the opera-

"

tions oM, dpm 0w finitely many times, its components can be derived by
using formulae (1.10), (1.11), (1.12) iteratively according to its structure.
(This is the first method for deriving the expressions of the components.)

In (1.10), (1.11), (1.12) the formulae for ( ) and ( ) are symmetric,

that is, we can obtain one from the other by interchanging all "*"s and " *"s.
Theorem 1.6 (Symmetry)

If F* = ¢(0,1,*,7), then F* = ¢(0,1,7.,”) and vice versa.
Example 1.3 For the boolean function F(x;.x2) shown in Fig. 1.1 find the

formula for F* and F~.

Level 3 i Level 2 : Level 1
X S ;
1 P
: ; Flx,%)
x5 :::>;X3 >
Fig. 1.1 Example
At level 1
*__)(__._*_—’(_1 ol T =¥ ‘=9
Foom g+ xg)7= (xg)™ = 3 xg + X 30 + %, X2
At level 2, x5 — x3 + x4,

* T 1 -1 3 o . *
Foom O + 37 + xy(xg + x )" + 3G (xg + Xy)

¢, 1 1 * ¢ % o, % _0O 0 _x * %
(X + 3y + g Xy + g xg) + X0 xG + x§ X+ x] X))
¥ O 0 _ *
L ) + x4(xg X4+ xg Xy + X3 x4)
. _ )(_ 1_ )(*_
By orthogonality Xy Xy =X X4 = X4 Xy = Xy Xy = 0,
*_1‘)( » » O
F" = X3 X4 + X3 X, + Xq Xg-
At levei 3 § Xy = xl; X3 = X Xq,
o »* 1 _ % L I R 2
F" = (x1 x2)x1 + (x1 Xg + X| X5 + x| x2)x1
» .1 1 _ % * ¥y 1
+ (x1 Xg + X; X5 + ) x2)x1



