g > I E-M
e > 1 G N

s EM - 1TOV LEVI
ASHOK K. AGRAWALA

REAL-TIME
SYSTEM
DESIGN

Shem-Tov Levi

Ashok K. Agrawala

McGraw-Hill Publishing Company

New York St. Louis San Francisco Auckland Bogota Caracas Hamburg
Lisbon London Madrid Mexico Milan Montreal New Delhi Oklahoma City Paris
San Juan Sao Paulo Singapore Sydney Tokyo Toronto

This book was set in Times Roman by Publication Services, Inc.
The editor was David M. Shapiro:

the production supervisor was Friederich W. Schulte.

The cover was designed by John Hite.

Project supervision was done by Publication Services, Inc.

R. R. Donnelley & Sons Company was printer and binder.

REAL-TIME SYSTEM DESIGN

Copyright © 1990 by McGraw-Hill. Inc. All rights reserved.

Printed in the United States of America. Except as permitted under the
United States Copyright Act of 1976. no part of this publication may be
reproduced or distributed in any form or by any means. or stored in a data
base or retrieval system, without the prior written permission of the
publisher.

1234567890DOCDOCI9543210
ISBN 0-07-037491-0

Library of Congress Catalog Card Number: 90-60025.

LIST OF FIGURES

0 1 ==

W N —

W RN NN = ——
(U EN

[SSERUSERUS IRUS)
(O S

w w
PLwiv—oLwowuauh

B s s W W
o

&b
% 9 o

5.1

Embedded computer system

Computation interactions with operating system and environment
System’s layers of objects

Point-based versus internal-based representation
Master-slave synchronization principle
Breakdown of communication delay in Tempo
Comparison of synchronization algorithms
Resynchronization example
Justifier-justification-justificand relations
Object’s owner and user justification

Example: different contexts sharing an object
Relations between different types of objects
Recovery block versus modular redundancy
Interrupt service without preemption
“First-deadline™ scheduling with preemption
Local versus remote servers

Objects involved in communication

Timing diagram for local and remote nodes
Convex interval binary relations

Object’s owner and user temporal justification
A calendar expressed in C

Uncertainty of time

Variance of duration

Time constraint laxity “window™

Constraint propagation using global-time terms
Time constraint propagation .
Life cycle of an ideal real-time system

51

58
63
64
65
66
66
69
69
76

XV

XVI LIST OF FIGURES

5.2
5.3
54

n

LI 1 =

L N =

SO P0VORXILIIIIIANARNANW
W = N

W = =k

19—

9 =

13.
13.3
13.4
14.1
14.2
14.3
14.4
15.1
15.2
15.3
16.1
16.2
16.3
17.1
17.2
17.3
17.4
17.5
17.6
17.7

Statechart example

Clustering states in statecharts

Zooming in statecharts

States orthogonality in AND decomposition
Hierarchical control structure

Information hiding concept

Computation graph model

Total and partial order conflicts

SPN example

Annotated Petri net example

Transition firing inhibit

Asynchronous subsystem

Independent cycle subsystem

PARC execution configuration

Paths example of weakest precondition solution
RTL constraint graph representation
Constraint graph example

Positive-cycle detection by node removals
Rendezvous in Ada typical remote call
Glass-box and black-box testing

Data-flow diagram example

R-net example

Time-driven scheduling examples

General time constraint in TDS

Verification of schedulability of 7C;,
Laxity interaction of overlapping time constraints
Laxity computation example

Spreading requirement in preemptable constraint
Temporal (a,b) and physical (¢,d) redundancy
Wrong use of resources: O-resiliency
Forward wave of ALLOC REQ messages
Backward wave of ALLOC REP messages
Network interface unit (NIU)

Delay model for a LAN

Duration of semantic link

A single access server object

MARUTI: user’s view of management
Interrupt handling and serving

Control transfer from on-line to off-line
Local versus remote relation

Typical joint variables in MARUTI

Design example: inserting time constraint
Design example: removing time constraint
Example design

Example design

80

80

81

91

86

87

90

94

96

99
100
102
103
108
112
114
114
115
126
133
140
142
152
153
192
193
194
195
220
220
226
227
239
241
292
258
260
262
269
270
277
279
280
282
283

PREFACE

Computers have been used for real-time applications for a long time. The design
and implementation of such systems has usually been carried out as an extension
of the system design principles used for general purpose computer systems. In
particular, real-time systems have often been designed as interrupt-driven systems
with priority-based scheduling. Priority structures are used to accomplish the real-
time processing by assigning higher priority to critical tasks. In this approach rime
is not treated explicitly in resource management or in scheduling of tasks.

The hard real-time applications of tomorrow must provide support for reli-
able distributed operation. The past design methodologies may not be adequate to
meet these challenges. In this book we have attempted to present a comprehensive
approach to the design of the next generation of real-time systems.

We believe that it is essential for the next generation of hard real-time
systems to use time directly and explicitly. The approach taken here is to make
a uniform representation and use of time. Using an object-oriented approach, we
consider time to be an integral property of every entity in the system. In addition,
a hard real-time system has to have a deterministic and predictable behavior. The
techniques useful for making the system behavior deterministic are also presented.

It has often been noted that the maintenance of a complex real-time system
becomes a major problem. Any change usually requires extensive testing to
assure functional as well as temporal correctness. The approach we propose
is to carry out a verification of the resource allocation. In this way we can
reduce significantly the testing requirements. The ideas presented in this book
are realistic, they have been implemented, and they are therefore practical.

We present a detailed discussion of the current state-of the art of real-time
systems and application methodologies along with some major recent advances.

Xvii

XVill PREFACE

This includes a complete presentation of the design, implementation, verification,
and testing issues of the real-time problems. Both the application level and the
system level view are taken.

This book is aimed at the professional in the field who has to deal with
real-time systems from different perspectives. It is useful to the researchers as it
presents many novel ideas, not only for real-time systems but also for distributed,
reliable systems. The complete treatment of real-time systems makes it well suited
for a graduate or advanced undergraduate course on the subject.

This book reflects our experience in building and implementing real-time
systems that are in use extensively, as well as our backgrounds in academic
research. The main motivation for this work was to explore ways of improving
the current design methodologies to meet the challenges of tomorrow. As we
found no adequate text on the subject, we started compiling our notes, which
resulted in this book.

While writing the book we found many issues we wanted to share with our
readers. Some of these issues concern general subjects such as fault tolerance or
complexity. while others concern practical issues such as debugging. A detailed
presentation of all these topics would make the book unwieldy. The more infor-
mation we add the more difficult it would be to focus. We therefore decided on
this version of the book, in order to present a discussion of all relevant topics,
with suitable references for further study.

As the book is aimed at various types of professionals in the field of real-
time systems, let us suggest a structure of the book according to reading interests.

The book has sections that are common to all readers, as they include
basic information as well as notation and semantic definitions. These sections
are: Section 2.1, Section 2.2, Section 2.3, Section 3.1, Section 4.1, Section 5.2,
Section 6.1, Section 6.2, Chapter 11, Chapter 12, Section 13.1, Section 14.1,
Section 15.1, Section 15.4, Section 16.1, and Section 17.1. The information
introduced in these sections is essential for understanding the rest of the book.

Readers who are more engineering-oriented may want to read the following
sections: Section 2.4, Section 2.5, Section 3.2, Section 3.3, Section 4.2, Section
5.1. Section 7.1, Chapter 9, Chapter 10, Section 13.2, Section 13.3.1, Section
13.4.1, Section 14.2, Section 14.4, Section 15.2. Section 15.3, Section 16.2,
Section 17.2, and Section 17.3.

Readers who are more research-oriented may find further interest in the
following sections: Section 4.3, Section 6.3, Chapter 7, Chapter 8, Section 13.2,
Section 13.3, Section 13.4, Section 14.2, Section 14.3, Section 14.4, and Section
17.3.

We hope that the above suggested structure will help each professional to
focus easily where he or she finds interest.

ACKNOWLEDGMENTS

A project of this magnitude is clearly the result of a lot of support from many
friends. Members of the Systems Design and Analysis Group of the Department

PREFACE XIX

of Computer Science, University of Maryland have actively contributed to the
development of the material in the book and are implementing the MARUTI
operating system, which is based on the ideas presented in this book. We would
like to gratefully acknowledge the support for our research that has contributed
to the development of this book. Our research was supported by the Office of
Naval Research and Rome Air Development Center through the Army Strategic
Defense Command through grants and contracts to the Department of Computer
Science at the University of Maryland. We would also like to acknowledge the
Israel Aircraft Industries, Ltd.. for contributing to the making of this work.
Shemi-Tov Levi
Ashok K. Agrawala

CONTENTS

List of Figures XV
Preface xvii

1 Introduction 1
1.1 Embedded Computer Systems 2
1.2 Historical Perspective 3
1.3 Distributed Real-Time System Environment 4
1.4 Real-Time Programming 5
1.5 Real-Time Operating Systems 6
1.6 Book Organization 7

Part I Real-Time Issues

2 Time Handling 11
2.1 Representation of Time 11
2.2 Time Constraints 13
2.3 Time Service and Synchronization 14
2.3.1 Definitions 14
2.3.2 Clock Synchronization 15

2.3.3 Types of Clock Systems 15

2.4 Master-Slave Algorithms 16
2.4.1 Tempo: A Master-Slave Example 18

2.4.2 Master-Slave Enhancements 20

2.5 Distributed Clock Algorithms 22
2.5.1 A Fundamental Ordering Approach 23

X CONTENTS

2.5.2 Time Intervals Approach 24

2.5.3 Fgult-Tolerant Algorithms 28

3 Objects 34
3.1 Basic Concepts 34
3.1.1 Objects: Justification and Manipulation 34

3.1.2 Creation and Deletion of Objects 35

3.1.3 Accessing Objects 36
3.1.4 Object Architecture 40
3.1.5 Relations and Operations 40

3.1.6 Fault Tolerance Relations 42

3.2 Requirements for Exceptions 44
3.2.1 Interrupt-Driven Systems 44

3.2.2 Communication Service as an Agent Object 49

3.2.3 Exception Handling 2l

3.3 Guarantees in Hard Real-Time Systems 54
3.4 Concluding Remarks 55
4 Adding Time to Objects 56
4.1~ Temporal Relations 56
4.1.1 Time Representation 56

4.1.2 Temporal Relations 57

4.2 Calendars 61
4.3 Time Projection 64
4.3.1 Constraint Projections 65

4.3.2 Assessment 68

4.3.3 Constraint Propagation 68

4.4 Concluding Remarks 71

Part I Real-Time Applications

5 The Real-Time System Life Cycle 75
5.1 Requirement Specification 77
5.2 Statecharts 79
5.3 Concluding Remarks 82
6 Structured Design Approaches 83
6.1 Event-Based Model 83
6.1.1 Model Description 84

6.1.2 Properties of the Event-Based Model 84

6.1.3 Examples 84

6.2 Process-Based Structured Design 85
6.2.1 Description of a Theoretical Model 85

6.2.2 Structured Design Method Characteristics 85

6.2.3 DARTS 87

6.3 Graph-Based Theoretical Model 89
6.4 Concluding Remarks 92

CONTENTS X1

7 Petri Net Models 93
7.1 Stochastic Petri Net (SPN) Model Analysis 95
7.1.1 Definitions 95

7.1.2 Example of SPN 96

7.2 Annotated Petri Nets 99
7.3 Time-Augmented Petri Nets 101
7.3.1 Time-Driven System Model 101

7.3.2 Concept of Relative Firing Frequency 102

7.3.3 Subclasses of Time-Driven Systems 102

7.3.4 Proying Safeness in the Presence of Time 104

7.4 Assessment of Petri Net Methods . 105
8 Axiomatic Approaches 107
8.1 Weakest Precondition Analysis 108
8.1.1 Predicate Transformers 108

8.1.2 Program Time Behavior 109

8.1.3 Method and Example 111

8.2 Real-Time Logic 112
8.3 Time-Related History Variables 115
8.4 State Machines and Real-Time Temporal Logic 119
8.4.1 ESM Components 119

8.4.2 Real-Time Temporal Logic 120

8.5 Concluding Remarks 121
9 Language Support and Restrictions 123
9.1 Real-Time Programming Discipline 123
9.1.1 Language Requirements 124

9.1.2 Discipline for Real-Time Programming 124

9.2 Real-Time Programming Languages 125
9.2.1 Asynchronous Real-Time Language 125

9.2.2 Synchronous Real-Time Language 127

9.3 Schedulability Analysis 128
9.4 Concluding Remarks 130

10 Verification and Validation of Real-Time Software 131

10.1 Testing Real-Time Properties 132
10.1.1 Systematic Testing Methods 132
10.1.2 Statistical Testing 133
10.2 Simulation as Verification Tool 136
10.2.1 Classes and Aims 136
10.2.2 Problems in Simulation for Verification 137
10.3 Testing Control and Data Flow 138
10.3.1 Control-Flow Verification 138
10.3.2 Data-Flow Verification 139
10.4 Proof Systems 143
10.5 Operational Approach - 144

10.6 Concluding Remarks 145

Xii CONTENTS

Part 111

Real-Time Operating Systems

11
11.1

11.
11.4

(98]

11.
11.6

N

11.7
11.8

— e —
[SO 2 SO I SO I §)

Properfies of Real-Time Operating Systems

Current Operating Systems
11.1.1 Priority-Driven Systems

11.1.2 Priority-Driven with Enhanced Time Services
11.1.3 Time-Driven Scheduling

11.1.4 Deadline-Guaranteeing Operating Systems
11.1.5 Assessment of Current Approaches

Resource Management/Allocation

11.2.1 Scheduling

11.2.2 Processor Allocation

11.2.3 Architecture Dependency

Time Services

Communication

11.4.1 Message Passing

11.4.2 Error Handling

11.4.3 Issues of Efficiency in Implementation
Name Servers

Data Access Strategy

11.6.1 Protection

11.6.2 Remote Storage and Directory Services
Fault Tolerance

Other Services

11.8.1 Service Architecture

11.8.2 Reconfiguration Services

11.8.3 1/O Device Services

Concluding Remarks

Allocation and Scheduling

Problem Definition

Rate Monotonic Priority Scheduling Algorithms
NEXT-FIT-M Partitioning for Rate-Monotonic Schedulers
Allocation with Minimization of IPC

Allocation with Bottleneck Processor Load Minimization
Allocation with Load Balance Optimality Constraint
Serving Non-Real-Time Tasks by a Real-Time Scheduler
Heuristic Approach in Scheduling

Imposing Precedence and Resource Requiremeﬁts
Concluding Remarks

Verification of Schedulability

Feasible Schedule Conditions

13.1.1 Convex Time Constraints

13.1.2 Nonconvex Time Constraints
Algorithms Principles

Schedule Feasibility for Convex Constraint
13.3.1 The Verification Algorithm

149

149
150
150
151
154
155
156
156
158
159
160
161
162
163
163
164
165
165
165
166
166
166
167
167
167

169

170
171
172
174
177
179
183
184
186
187

188

189
189
196
199
200
200

CONTENTS X1l

13.3.2 Correctness of Schedule Feasibility Guarantee 204

13.3.3 Properties of Schedule Feasibility Verification 205

13.4 Schedule Feasibility for Nonconvex Constraint 209
13.4.1 The Verification Algorithm 209

13.4.2 Properties of Schedule Feasibility Verification 213

13.5 Conclusion 217
14 Resource Allocation 218
14.1 Definitions and Formulation 219
14.1.1 Model Description 219

14.1.2 Conditions and Formulation 221

14.2 Allocation Algorithm 223
14.2.1 Message Types Used 223

14.2.2 Principles of Allocation Initiation 224

14.2.3 Principles of Algorithm for Allocator 225

14.2.4 Local and External Variables 229

14.2.5 The Allocation Algorithm 229

14.3 Allocation Algorithm Properties 233
14.3.1 Algorithm Termination 233

14.3.2 Allocatability Correctness 234

14.3.3 Achievement of Fault Tolerance Objectives 235

14.4 Reallocation upon Failure 236
14.4.1 Rational 236

14.4.2 Algorithm for Detection Unit D; 237

14.5 Concluding Remarks 237
15 Communication 238
15.1 Network Characteristics 238
15.1.1 The Network Interface 239

15.1.2 Communication Elements and Timing Uncertainties 240

15.1.3 A Communication Delay Model 242

15.2 Protocols for Real-Time Communication 244
15.2.1 Protocols with Contention 244

15.2.2 Synchronous Protocols 247

15.3 Heterogeneity and Representation 250
15.4 Bounded Semantic Links 251
15.4.1 Passive Links 251

15.4.2 Agents 252

15.5 Concluding Remarks 253

Part IV Operating System Implementation

16 The MARUTI Operating System 257
16.1 Introduction 257
16.1.1 Objectives < 257
16.1.2 Approach and Principles 258

16.1.3 What’s New? 260

XiV CONTENTS

16.2 MARUTI Components 261
16.2.1 Kernel Components 261
16.2.2 Application Level Components 265
17 Operational Issues and Examples 268
17.1 Execution and Distribution Considerations 268
17.1.1 Scheduling Queues 268
17.1.2 Remote Services 269
17.2 Job Acceptance in MARUTI 271
17.2.1 MARUTI after Boot 271
17.2.2 MARUTI after LOG IN 272
17.2.3 Executing a Server Object 272
17.2.4 Executing an Actor (or Agent) Object 273
17.3 Some Examples of Design 274
17.3.1 Variables of Object’s Joint 275
17.3.2 Inserting Time Constraint into a Calendar 277
17.3.3 Removing Time Constraint from Object’s Calendar 279

17.3.4 Loading and Unloading Time Constraint in
Object’s Calendar 281
17.4 - Concluding Remarks 282

Part V. Epilog

18 Conclusion 287
Bibliography 289
Index 297

CHAPTER

INTRODUCTION

The ever-increasing use of computer systems is clear evidence that the functional
capabilities provided by them can be used very effectively for a variety of purposes
and in a large number of fields. In many of these applications, the performance of
the computer system is measured with metrics such as response time or turnaround
time, the implication being that the faster the better with no specific requirement
being placed on the timing behavior of the system. Real-time applications are
different from this paradigm of computation in that they impose strict requirements
on the timing behavior of the system. The systems that support the execution of
real-time applications and ensure that the timing requirements are met are often
referred to as real-time systems. Traditionally, the correctness of many computer
systems has been taken to imply their logical and functional behavior. For real-
time systems correctness depends on the temporal properties of this behavior as
well.

As the price and performance of digital computers continue to improve
and their size, weight, and power requirements continue to decrease, there has
been a steady increase in the use of computer-based real-time systems in a wide
variety of fields. Application domains such as military, industry, and medicine
indicate a wide spectrum of possible implementations. Current real-time system
examples include nuclear power plant control, industrial manufacturing control.,
medical monitoring, digital fly-by-wire avionics, weapon delivery systems. space
navigation and guidance, and reconnaissance systems. As the use of real-time
systems has spread, the timing requirements have become more stringent and the
reliability requirements more difficult to achieve.

Y

2 REAL-TIME SYSTEM DESIGN

In general, we call a system a real-time system when it can support the
execution of applicatigns with time constraints on that execution. A variety of
systems clearly meet this definition. Note that no assumptions are made about
the structure or the architecture of the computer system used. A particular class
of such systems comprises embedded computer systems.

1.1 EMBEDDED COMPUTER SYSTEMS

Many complex systems in use today require a very elaborate control and compu-
tational facility to support their continued proper functioning. Such systems often
use dedicated hardware as controllers. Clearly, all the computations and control
functions can also be carried out by an appropriate computer system. When a
computer system is used in a large system to provide control and computation
functions. it is often referred to as an embedded computer svstem. Currently
we find such systems in almost every aspect of our lives, with computers being
introduced into new systems at an ever-increasing rate.

An embedded computer system has to manage and control the rest of
the system. It collects data through sensors and issues control commands to
mechanical. electromechanical, and electronic actuators. Figure 1.1 illustrates a
typical system of this class. Note that this figure could also depict any process
control system; we are using it to convey the idea of a computer as a controller
in such a system.

A distinguishing feature of embedded computer systems is that they usually
provide an execute-only environment, in which no program development goes
on. The processing requirements in these systems do not change as they handle a
fixed and well-defined workload. Although some embedded systems are designed

Man-machine
e System management and control ; :
intertaces
sensor sensor data
Computerized [/0 driver sense cntrl
algorithm
sensor sensor data
o PN e mm=- 1
1/0O driver sense cntrl \ I
. : l - I
Computerwcd sensor sensor data J*+—> Environment |
1 - F I
algorithm /0 driver sense cntrl I (plant)
. |
| |
actuator act status 1
1/0 driver actuator
Computerized
e 5.
algorithm actuator act status
1/0 driver actuator

FIGURE 1.1

Embedded computer system.

INTRODUCTION 3

to handle transient inputs, the processing requirements for such transient requests
are predefined. For example, the embedded computer system used in automobiles
to control the fuel injection and spark ignition executes one fixed program that
may adjust its parameters as its sensors provide it with new information about
environmental conditions.

When we study embedded computer systems, their close interaction with
mechanical, electromechanical, and electronic components requires that such
components be considered as a part of the system and that the expressions
and modeling tools used in the study have the capability of representing the
interdisciplinary properties of the system. We cannot describe the performance of
a robot arm without reference to its mechanics, electronics, and control software.
Furthermore, each discipline must maintain consistency with the others. We want
the system description to resolve interdisciplinary contradictions when they exist.
For example, consider a control system with high-bandwidth control software and
control hardware that is very slow. The system description of this example must
allow for combining the hardware and its control software. The description must
reflect the overall slow response time of this system.

Specifying a system that makes use of techniques from several disciplines
starts at the level of the whole system. Out of this high-level specification,
we specify the subsystems up to single-discipline components. Derivation of
subsystem specifications based on the high-level specification must be consistent
and unambiguous. Budgeting software subsystem specifications must, therefore,
not only support the performance description of the whole system; it must also be
derivable from a whole system description and allow verification of the system
properties.

1.2 HISTORICAL PERSPECTIVE

Real-time systems developed from embedded computer systems are still an impor-
tant family of real-time systems. The use of digital computers in such systems
started with the replacement of analog processing sections of control systems
during the 1950s. A major step in this direction was taken in March 1956. TRW
engineers were contracted by Texaco to computerize a process control system
in a polymerization unit of a refinery in Port Arthur, Texas [11]. The process
controller employed an RW-300 computer, which controlled 26 flows, 72 tem-
peratures, and 3 pressures. It was announced to be operational in March 1959. In
1962, another major step was taken in the chemical industry, at ICI in England.
where a single Ferranti computer replaced complete analog instrumentation that
controlled 129 valves and measured 224 nodes.

Other examples of the early use of embedded systems exist. Airborne
controllers were needed for missile and aircraft applications. NASA engineers
developed many flight control systems during the 1960s for the Mercury, Gemini,
and Apollo projects. Other military projects employed time-driven sequencers,
digital comparators, and adders for flight control subsystems.

