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PREFACE

Computers have been used for real-time applications for a long time. The design
and implementation of such systems has usually been carried out as an extension
of the system design principles used for general purpose computer systems. In
particular, real-time systems have often been designed as interrupt-driven systems
with priority-based scheduling. Priority structures are used to accomplish the real-
time processing by assigning higher priority to critical tasks. In this approach rime
is not treated explicitly in resource management or in scheduling of tasks.

The hard real-time applications of tomorrow must provide support for reli-
able distributed operation. The past design methodologies may not be adequate to
meet these challenges. In this book we have attempted to present a comprehensive
approach to the design of the next generation of real-time systems.

We believe that it is essential for the next generation of hard real-time
systems to use time directly and explicitly. The approach taken here is to make
a uniform representation and use of time. Using an object-oriented approach, we
consider time to be an integral property of every entity in the system. In addition,
a hard real-time system has to have a deterministic and predictable behavior. The
techniques useful for making the system behavior deterministic are also presented.

It has often been noted that the maintenance of a complex real-time system
becomes a major problem. Any change usually requires extensive testing to
assure functional as well as temporal correctness. The approach we propose
is to carry out a verification of the resource allocation. In this way we can
reduce significantly the testing requirements. The ideas presented in this book
are realistic, they have been implemented, and they are therefore practical.

We present a detailed discussion of the current state-of the art of real-time
systems and application methodologies along with some major recent advances.

Xvii



XVill PREFACE

This includes a complete presentation of the design, implementation, verification,
and testing issues of the real-time problems. Both the application level and the
system level view are taken.

This book is aimed at the professional in the field who has to deal with
real-time systems from different perspectives. It is useful to the researchers as it
presents many novel ideas, not only for real-time systems but also for distributed,
reliable systems. The complete treatment of real-time systems makes it well suited
for a graduate or advanced undergraduate course on the subject.

This book reflects our experience in building and implementing real-time
systems that are in use extensively, as well as our backgrounds in academic
research. The main motivation for this work was to explore ways of improving
the current design methodologies to meet the challenges of tomorrow. As we
found no adequate text on the subject, we started compiling our notes, which
resulted in this book.

While writing the book we found many issues we wanted to share with our
readers. Some of these issues concern general subjects such as fault tolerance or
complexity. while others concern practical issues such as debugging. A detailed
presentation of all these topics would make the book unwieldy. The more infor-
mation we add the more difficult it would be to focus. We therefore decided on
this version of the book, in order to present a discussion of all relevant topics,
with suitable references for further study.

As the book is aimed at various types of professionals in the field of real-
time systems, let us suggest a structure of the book according to reading interests.

The book has sections that are common to all readers, as they include
basic information as well as notation and semantic definitions. These sections
are: Section 2.1, Section 2.2, Section 2.3, Section 3.1, Section 4.1, Section 5.2,
Section 6.1, Section 6.2, Chapter 11, Chapter 12, Section 13.1, Section 14.1,
Section 15.1, Section 15.4, Section 16.1, and Section 17.1. The information
introduced in these sections is essential for understanding the rest of the book.

Readers who are more engineering-oriented may want to read the following
sections: Section 2.4, Section 2.5, Section 3.2, Section 3.3, Section 4.2, Section
5.1. Section 7.1, Chapter 9, Chapter 10, Section 13.2, Section 13.3.1, Section
13.4.1, Section 14.2, Section 14.4, Section 15.2. Section 15.3, Section 16.2,
Section 17.2, and Section 17.3.

Readers who are more research-oriented may find further interest in the
following sections: Section 4.3, Section 6.3, Chapter 7, Chapter 8, Section 13.2,
Section 13.3, Section 13.4, Section 14.2, Section 14.3, Section 14.4, and Section
17.3.

We hope that the above suggested structure will help each professional to
focus easily where he or she finds interest.
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CHAPTER

INTRODUCTION

The ever-increasing use of computer systems is clear evidence that the functional
capabilities provided by them can be used very effectively for a variety of purposes
and in a large number of fields. In many of these applications, the performance of
the computer system is measured with metrics such as response time or turnaround
time, the implication being that the faster the better with no specific requirement
being placed on the timing behavior of the system. Real-time applications are
different from this paradigm of computation in that they impose strict requirements
on the timing behavior of the system. The systems that support the execution of
real-time applications and ensure that the timing requirements are met are often
referred to as real-time systems. Traditionally, the correctness of many computer
systems has been taken to imply their logical and functional behavior. For real-
time systems correctness depends on the temporal properties of this behavior as
well.

As the price and performance of digital computers continue to improve
and their size, weight, and power requirements continue to decrease, there has
been a steady increase in the use of computer-based real-time systems in a wide
variety of fields. Application domains such as military, industry, and medicine
indicate a wide spectrum of possible implementations. Current real-time system
examples include nuclear power plant control, industrial manufacturing control.,
medical monitoring, digital fly-by-wire avionics, weapon delivery systems. space
navigation and guidance, and reconnaissance systems. As the use of real-time
systems has spread, the timing requirements have become more stringent and the
reliability requirements more difficult to achieve.
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2 REAL-TIME SYSTEM DESIGN

In general, we call a system a real-time system when it can support the
execution of applicatigns with time constraints on that execution. A variety of
systems clearly meet this definition. Note that no assumptions are made about
the structure or the architecture of the computer system used. A particular class
of such systems comprises embedded computer systems.

1.1 EMBEDDED COMPUTER SYSTEMS

Many complex systems in use today require a very elaborate control and compu-
tational facility to support their continued proper functioning. Such systems often
use dedicated hardware as controllers. Clearly, all the computations and control
functions can also be carried out by an appropriate computer system. When a
computer system is used in a large system to provide control and computation
functions. it is often referred to as an embedded computer svstem. Currently
we find such systems in almost every aspect of our lives, with computers being
introduced into new systems at an ever-increasing rate.

An embedded computer system has to manage and control the rest of
the system. It collects data through sensors and issues control commands to
mechanical. electromechanical, and electronic actuators. Figure 1.1 illustrates a
typical system of this class. Note that this figure could also depict any process
control system; we are using it to convey the idea of a computer as a controller
in such a system.

A distinguishing feature of embedded computer systems is that they usually
provide an execute-only environment, in which no program development goes
on. The processing requirements in these systems do not change as they handle a
fixed and well-defined workload. Although some embedded systems are designed

Man-machine
e System management and control ; :
# intertaces
sensor sensor data
Computerized [/0 driver sense cntrl
algorithm
sensor sensor data
o PN e mm=- 1
1/0O driver sense cntrl \ I
. : l - I
Computerwcd sensor sensor data J*+—> Environment |
1 - F I
algorithm /0 driver sense cntrl I (plant)
. |
| |
actuator act status 1
1/0 driver actuator
Computerized
e 5.
algorithm actuator act status
1/0 driver actuator

FIGURE 1.1

Embedded computer system.



INTRODUCTION 3

to handle transient inputs, the processing requirements for such transient requests
are predefined. For example, the embedded computer system used in automobiles
to control the fuel injection and spark ignition executes one fixed program that
may adjust its parameters as its sensors provide it with new information about
environmental conditions.

When we study embedded computer systems, their close interaction with
mechanical, electromechanical, and electronic components requires that such
components be considered as a part of the system and that the expressions
and modeling tools used in the study have the capability of representing the
interdisciplinary properties of the system. We cannot describe the performance of
a robot arm without reference to its mechanics, electronics, and control software.
Furthermore, each discipline must maintain consistency with the others. We want
the system description to resolve interdisciplinary contradictions when they exist.
For example, consider a control system with high-bandwidth control software and
control hardware that is very slow. The system description of this example must
allow for combining the hardware and its control software. The description must
reflect the overall slow response time of this system.

Specifying a system that makes use of techniques from several disciplines
starts at the level of the whole system. Out of this high-level specification,
we specify the subsystems up to single-discipline components. Derivation of
subsystem specifications based on the high-level specification must be consistent
and unambiguous. Budgeting software subsystem specifications must, therefore,
not only support the performance description of the whole system; it must also be
derivable from a whole system description and allow verification of the system
properties.

1.2 HISTORICAL PERSPECTIVE

Real-time systems developed from embedded computer systems are still an impor-
tant family of real-time systems. The use of digital computers in such systems
started with the replacement of analog processing sections of control systems
during the 1950s. A major step in this direction was taken in March 1956. TRW
engineers were contracted by Texaco to computerize a process control system
in a polymerization unit of a refinery in Port Arthur, Texas [11]. The process
controller employed an RW-300 computer, which controlled 26 flows, 72 tem-
peratures, and 3 pressures. It was announced to be operational in March 1959. In
1962, another major step was taken in the chemical industry, at ICI in England.
where a single Ferranti computer replaced complete analog instrumentation that
controlled 129 valves and measured 224 nodes.

Other examples of the early use of embedded systems exist. Airborne
controllers were needed for missile and aircraft applications. NASA engineers
developed many flight control systems during the 1960s for the Mercury, Gemini,
and Apollo projects. Other military projects employed time-driven sequencers,
digital comparators, and adders for flight control subsystems.



