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INTRODUCTION

Experiment has always been a major tool in tackling practical problems
and testing theoretical hypotheses in chemistry and chemical engineering.
Traditional experimentation, however, involves a good deal of effort and
time, especially where complex processes are involved. A very efficient
way to enhance the value of research and to cut down the process develop-
ment time is through designed experiment, that is, by optimizing experiment
at every stage from inception, through research and development, to engi-
neering and production.

At present, process analysis, design, optimization and performance
prediction in chemical engineering are above all based on mathematical
modelling [1]. If the designer has at his disposal complete information
(thermodynamic, kinetic and hydrodynamic data) about the process or
plant of interest, he can develop a deterministic mathematical model as a
set of ordinary or partial differential equations. In order to determine the
coefficients appearing in the equations and also to verify the model, he
runs an experiment.

If the available information is not complete, the designer undertakes
a functional study of the process or plant; to this end, he runs an experiment
and observes the input and output process or plant variables.

In Fig. 1.1, the measurable or controllable input variables are designated
X1, . .., Xg; uncontrollable or random process variables (noise) are designated

w1, ..., w;; and the output variables (responses) are designated y1, ..., Yp-
Yy
Yo = ——
e o e
X — Y

Fig. 1. 1. Multivariate process with multiple inputs

The term ‘“‘random” applies to variables that can be accounted for with
difficulty, if at all. This is true, for example, of the fall in the activity of a
catalyst, variations in the state of a heat transfer surface, variations in the
ambient temperature, etc. The input variables xi, ..., xx form the basis
(or basic) set of variables, because they control the experiment. Of course,
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this division of process variables into random and basic is arbitrary. The
designer may class as random any variable not included in the basis, even
though it may be known well. Depending on the objective sought or the
experimental capabilities available, some measurable variables may be
included in process (or plant) noise. This will of course impair the accuracy
of the mathematical model. An output variable may be any technical or
economic index of the process or plant. Applying regression or correlation
analysis to experimental data, the designer can establish relationships
between the various variables and determine the conditions of an optimum.
A typical mathematical model is

y = @(xX1, X2, ..., Xz) (L.1)

where y is the dependent variable, or the response, and x;’s are the independ-
ent variables, or factors. They occupy what is known as the factor space,
and the graphical representation of the response function is called the
response surface.

In process analysis by statistical methods, the mathematical model is
most frequently a polynomial—a truncated Taylor series into which the
response function, Eq. (I.1), is expanded:

k k k
y=po+ _Zlﬁjxj+ ,Z P+ ,Zlﬁﬁxf +... d.2)
J = u, j= J=

u#j
where
B = op/ox; Buj = 82¢/axll ox; Bii = 82¢/2 axf

In any real process, there always are uncontrollable and unmeasurable
variables, and the response y usually varies at random. This is why the evalu-
ation of experimental data yields sample regression coefficients by, bj, b,;,
and b;;, which are estimates of the theoretical coefficients fo, f;, B4, and
B;j- The estimated regression equation developed on the basis of an experi-
ment will then take the form

k k k

y=bot Y b+ Y, buxui+ Y byxf (L.3)

=1 w1 i=h
u#j

The coefficient by is the free term of the regression cquation, the coefficients
b; are the linear terms, the coefficients b;; are the quadratic terms, and the
coefficients b,; are the interaction terms.

Any physical quantity associated with a process (temperature, pressure,
flow rate, etc.) varies with time in a random manner and is therefore a
random process. Over an observation interval, a random process takes on
some specific form unknown in advance, which we shall refer to as a reali-
zation of the random process. By definition, a random process implies
the existence of an infinite number of such realizations. By noting the
realizations of the random process at regular intervals, we obtain a set of
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random variables or sample functions. The time interval must be suffi-
ciently large for the sample functions, or random variables, to be taken
from independent experiments.

Random processes can be stationary (Fig. 1.2) and nonstationary (Fig. 1.3).
Stationary random processes can be described as those processes which
are independent of the choice of zero on the time axis. Another idea of
stationarity is that a time translation of a sample function results in a
similar sample function of the random process. Analysis of a stationary

Fig. 1. 2. Stationary random process

Fig. 1. 3. Nonstationary random process

random process within any time interval will yield the same probability
characteristics. In contrast, nonstationary random processes are those
which depend on the choice of zero on the time axis, and a time translation
of a sample function will not result in a similar sample function of the
random process. Obviously, for nonstationary random processes the statis-
tical properties of interest will be different in different observation intervals.
If the physical quantities representative of some chemical-engineering
process vary in the manner of a nonstationary random process, a model in
the form of Eq. (I.3), which is an algebraic equation with constant coef-
ficients, cannot be built in principle. This applies, for example, to catalytic
reactors if the characteristics of the catalyst change abruptly in the course
of service.

The statistical data necessary for analysis (model input specifications)
are gathered by conducting an experiment directly on the process or plant
of interest. This may be a passive or an active experiment. During a passive
experiment, the more traditional one of the two, a large series of measure-
ments is carried out, with the values of each of the independent variables



10 INTRODUCTION

altered from measurement to measurement in turn. This procedure can
also be used in the course of normal service of the process or plant. The
data thus obtained are then processed by the methods of classical regression
or correlation analysis [2-7]. An active experiment is conducted to a
predetermined plan or design (this is known as experimental design).
In an active experiment, the independent variables are altered all at the
same time, so that their interaction is evaluated at once, and the amount
of experimentation can substantially be cut down. The choice of an experi-
mental design depends on the prior information available and the objective
sought. The strategy of the experiment may be adjusted to suit a particular
stage in the overall process or plant evaluation.

The use of experimental design (or design of experiment) was for the
first time proposed by R. Fisher of Great Britain in the 1930s, but credit
for the now widely used methods of experimental design goes to Box and
Wilson of the United States [8]. Despite the limitations of passive experiment
and classical regression analysis [2], they are still widely used under indus-
trial conditions, because information about the behaviour of the process
or plant can be obtained without upsetting the normal course of production.
At present, the methods of experimental design widely used under labora-
tory and pilot-production conditions [9, 10, 11] are seldom employed under
industrial conditions [12]. However, it may be expected that further advances
in experimental design with reference to industrial conditions and progress
in technology will enable experiment optimization to be applied at any
stage of process development and evaluation.



Part One

ANALYSIS OF EXPERIMENT
BY STATISTICAL METHODS

Chapter One

MAIN STATISTICAL CHARACTERISTICS OF RANDOM
VARIABLES

1.1. Random Variables. Axioms of Probability Theory.
Distribution Laws

A random variable is that which, in a trial, takes on a value unpredictable
from the conditions of the experiment. In fact, a random variable possesses
a set of allowable values, but it takes on only one at each particular trial.
In contrast to non-random quantities which vary in value only when the
conditions (parameters) of a trial are changed, a random variable can take
on different values even though the parameters remain unchanged. Varia-
tions in a random variable from measurement to measurement are related
to unobservable (random) factors.

It is convenient to characterize a random variable by specifying the set
of values that it can take on. In this respect, random variables can be
discrete and continuous. The values that a discrete random variable can take
on can be counted in advance; in other words, a discrete variable can take
on only distinct values in an interval. The values that a continuous random
variable can take on cannot be counted in advance, because they fill the
interval continuously, and the variable has the probability of taking any
value.

It is not sufficient to specify the set of allowable values in order to cha-
racterize a random variable. For complete specification, it is necessary to
state which values it can take on and how often. Suppose that a discrete
random variable X can take on the values xi, xo, ..., Xt as a result of an
experiment. The ratio between the number m of observations or trials when
the random variable X takes on the value x; and the total number n of
trials is called the relative frequency of the event X = x;. The relative fre-
quency m/n itself is a random variable and changes according to the number
of trials made. With a very long series of trials, the relative frequency tends
to stabilize about some value, p;, called the probability of the event X = x;,
or statistically,

pi=P(X = xi) ~ m/n (L.1)

According to Bernoulli’s theorem, the probability P of the relative frequency
of an event, m/n, differing from the probability p; of the event by more
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than ¢ tends to zero as n tends to infinity for any positive value of ¢:
lim P{{m/n—p|=¢c} =0 (¢>0) (1.1a)

Kolmogorov of the Soviet Union has formulated the following axioms of
probability theory.
1. The probability of a random event 4 is a nonnegative number:

P(A) =0 (1.2)
2. The probability of a certain event U is equal to unity:
PU) =1 (1.3)
and the probability of an impossible event V' is equal to zero:
P(V)=0 (1.4)
Thus,
0=P =1 (1.5)

The sum of several events (4,+A4s+...+A,) is the event consisting
in the occurrence of at least one of these events.

3. The probability that at least one of several disjoint events 41, 4s, ...
A, will occur (union is designated by the symbol ) is equal to the sum of
the probabilities of these events:

P(41 U 42U ... Udy) = P(41)+P(A2)+P(43) (1.6)

This is the addition law of probability.
The product of several events (intersection is designated by the symbol ),

A1 N As() ... N A,, is the event consisting of all points common to
A]; A29 ) Alz-
Random events Ay, As, ..., A, are called statistically independent, if

the probability of any one of them is independent of the probability of
any other of these events. The probability of the product of several independ-
ent events (joint event) is equal to the product of the probabilities of these
events:

Event A4 is said to be dependent on (related to) event B, if the probability
of event A varies according as event B has occurred. The revised probability
of A when it is known that B has occurred is called the conditional probability
of A given B and is denoted by P(A4|B).

For related (or mutually dependent) events, the probability of the product
of two events is equal to the product of the probability of one by the con-
ditional probability of the other given the first event occurs:

P(4 N B) = P(A) P(B|4) (1.8)

This is called the multiplication law of compound probabilities. Similarly,
if event B precedes event A and affects it in some way, then

P(A N B) = P(B) P(4|B) (1.9)
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Example 1.1. The probability of trouble-free operation for a computer depends on
three series-connected units each of which may fail independently of the other two. The
probability of trouble-free operation for the first unit is P(4,) = 0.9, for the second
P(A,) = 0.8, and for the third, P(4;) = 0.8. Determine the probability of trouble-free
operation for the computer as a whole.

Solution. According to the multiplication law of compound probabilities, Eq. (1.7),

P(A) = P(A,) P(A,) P(4;3) = 0.9x0.80.8 = 0.576

The sum of the probabilities of all likely values of a random variable is
equal to unity

S pi=1 (1.10)

because it is true that the random variable will take on one of its values
during an experiment. This total probability is distributed among the indi-
vidual values in a certain definite manner.

A discrete random variable can completely be specified by giving its
values arranged in a probability sequence, that is, with the probability
p;: stated for each value x;:

X; Lo X3 X3 e X,

D; " P P2 Ps Px

Any relation connecting all likely values of a random variable to their
respective probabilities is known as the probability distribution of that
variable. The probability sequence given above is a form of representation
of probability distribution.

The distribution of a continuous random variable cannot be specified
by giving the probabilities of only a few values. A continuous variable
can take so many values that for most of them the probability to assume
the given values would be zero; that is, an event can occur, although its
probability has been predicted to be zero. For continuous random vari-
ables, one is interested in the probability that, as an outcome of an experi-
ment, the value of the variable will occur within a predetermined interval
of numbers. It is convenient to use the probability that X < x, where x is
an arbitrary real number and X is the random variable. This probability is
a function of x

P(X = x) = F(x) (1.11)

and is called the distribution function of the random variable.

A distribution function can be used to specify the distribution of a
discrete as well as a continuous random variable. By definition, F(x) is
a nondiminishing function of x; if x1 =< x», then F(x;) < F(x>) (Fig. 1.1a).
The ordinate of the curve corresponding to point x; represents the proba-
bility that a trial will show the random variable value, X, less than xi.
The difference of the ordinates corresponding to points x; and x» gives
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the probability that the values of the random variable will lie in the interval
between x; and xs:

P(xl =X =< X2) = F(X2)—F(.X1) (112)

At the extreme values of the argument, the distribution function takes on

values 0 and 1:
F(—) =0 F(+ ) =1 (1.13)

The distribution function of a discrete random variable is always a
discontinuous step function which jumps at points corresponding to the
likely values of the random variable and is equal to the probabilities of
these values (Fig. 1.15). The sum of all jumps is 1.

Fix) F(X)I
h—— . I ===
/ /7 : _——= F(XZ)—F(X,) _4_-‘_-'—"—!_
I
! I
] |

(@) @

Fig. 1. 1. Distribution function of: (@) a continuous random variable, and (b) a discrete
random variable

For a continuous random variable, use is more frequently made of a
derivative of the distribution function, known as the probability density
function of the random variable X. If F(x) is continuous and differentiable,

then

f(x) = F'(x) (1.14)
The probability density function f{x) also specifies the random variable
completely.

The probability density function is a nonnegative function (Fig. 1.2.)
The area bounded by the x-axis, lines x; and x»,-and the density curve
represents the probability that the random veriable will take on values in
the interval [x1, Xs]:

P(x1) <X =x3) = jﬁj f(x)dx = F(xs)—F(x1) (1.15)
(x)

pdaln

Fig. 1. 2. Probability density function of a continuous random variable
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Notably,
Fx) =P(—= =X =x = ["_f(x)dx (1.16)
Hence comes another important property of the probability density func-
tion, namely
[T /xdx =1 (1.17)

because the occurrence of the random variable within the interval
— o < X< + o is a true event.

1.2. Numerical Characteristics

Instead of specifying a random variable by giving its probability distri-
butions, in applied problems this is often done by giving numerical cha-
racteristics—real numbers that describe the salient features of the random
variable. They are called the moments of a random variable. For a random
variable X or the associated distribution function, the Ath moment ux
about a is the expected value of (x —a)* whenever this exists. For a discrete
random variable with values {x;} and probabilities {p;}

i = Y (x; —a)*p;
and for a continuous random variable with probability density function f,
we = [ (x—a)*f(x) dx.

The moments about zero (a = 0) are called raw moments. For a discrete
random variable, the kth raw moment is given by

=0 xip k=12 ... (1.18)
and for a continuous random variable,
e = [ xkf(x)dx (1.19)

The first raw moment (kK = 1) of a random variable is known as its
arithmetic mean, designated variously as E{X}, ux, or u. For discrete random
variables, it is

a1 =p=E{X})=Yl_1xpi (1.20)
and for continuous random variables,
=pu=E{X}=[~_xf(x)dx (1.21)

If a is the mean, then u is the central moment of order k. The kth central
moment of a discrete random variable is given by

Mk = ZL 1 (xi— ¥ pi (1.22)
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and for a continuous random variable,
e = T (x—pkf(x) dx (1.23)

The first central moment is zero always, @1 = 0. The second central moment
is called the variance of a random variable; it is a measure or variability
or dispersion of the random variable. The variance of a random variable
is the expected value of the square of the deviation of the random variable
from its expected value or mean, and is designated as Var {X}, 62, or 0% Thus,

Var {X} = E{(X—u)* (1.24)
For a discrete random variable, the variance is
Var {X} = p» = Xic1 (xi—@)?p; (1.25)
and for a continuous random variable,
Var {X} = [Z_ (x—u)*f (x) dx (1.26)

The square root of the second central moment is called the standard devia-
tion of a random variable:

o, = YVar {X} = Vuo (1.27)

The third central moment divided by o¢® is called the coefficient of skew-
ness:

71 = ws/o® (1.28)

The third central moment is a measure of the symmetry of the distribution
of a random variable with respect to the mean. In terms of the raw moments,
it is expressed as

ps = az—3o1xa+203 (1.29)

The fourth central moment is given by
pa = og—doios+6aios— 3t (1.30)

It characterizes the sharpness of the peak about the mode, also called
peakedness or kurtosis. The coefficient of kurtosis or excess is defined as

Y2 = ugfo*—3 (1.31)

Plots of density functions with nonzero coefficients of skewness and
excess are shown in Fig. 1.3. For comparison, it shows a dashed curve
having the same mean u and variance o2 but with the coefficients of skew-
ness and excess equal to zero.

The moments exist if the respective integrals (for continuous random
variables) exist or if the respective sequences (for discrete random variables)
converge absolutely. For random variables with limited values, the moments
exist always.



