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PREFACE

The subject matter concerns the study of complex motions of dynamical
systems, via the basic mathematical tool of maps (equivalent denomina-
tion recurrences; a non-invertible map being an endomorphism, an inver-
tible and differentiable one being a diffeomorphism). More precisely,
the book treats the properties of a class of determinist mathematical
models, the solutions of which have not the periodical regularity.
Nowadays, depending on the context, such solutions are called "chaotic".
Since few years, chaotic dynamics has become a favour choice for the
most part of disciplines dealing with evolution phenomena. It results

a considerable increase of the number of publications.

Due to its sudden and "explosive'" growth, the subject matter has been
developed independently of fundamental results obtained before. Then
many present results are rediscoveries, or variants of older ones.

From this point of view the book will appear non-conventional, because
its basic references are not those of the literature now considered as
classical. Some readers will no doubt find occasions to feel irritated
by it. More particularly, the assertion that so popular present notions
as those of "invariant coordinates", "kneading invariant",and others,
are variant of Myrberg's results will appear disappointing for some.
Nevertheless one of the purposes of this publication is to give to the
reader an information about generally unknown works of Hadamard, Lattés,
Cigala, Myrberg, Neimark, Leonov, Pulkin, ..., and thus to restore
certain anteriorities. However, it is worth of note that this choice
does by no means constitute a negative judgment of the works of the
literature now called classical. Generally written according to the
present standards of the "abstract theory of dynamical systems", they
are excellent and necessary from the point of view of formal exposition
and rigour. With these criterions, such works conserve wholly their

own merits, and must be considered as productions of quality.

The debate which might result from the choices of this book would not
be a new one. So, in his paper, "George David Birkhoff and his mathema-
tical work" (Bull. Amer. Math. Soc., May 1946, vol. 52, n°® 5, part 1,
pp. 357-391), Morse wrote :
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"Binkhoff was uncompromising in his appraisal of mathematics,by the
Zest of orniginality and nelevance., For him the systematic crganization
on exposition o4 a mathematical theory was always decondary in importan-
ce to its discovery. I necald his nemanks on a mathematical treatise
that had come to his attention and eventually had a wide circubation
but which he did not negard as oniginal. Birnkhoff said : "I nead this
book through in hatlf hour"... Some of the current mathematical theories
were hegarded by Binkhoff as no mone than relatively obvious efabora-
tions of concrete exemples".

Besides before Birkhoff, the famous mathematician Halphen is also

known to have often complained that non-essential generalizations are
overcrowding the publication media. In connection with this, it is well
known that the majority of scientists were not led to their discoveries

by a process of deduction from general postulates or general principles,
but rather by a thorought examination of properly chosen particular cases.
The generalizations have come later, because it is far easier to gene-
ralize an established result than to discover a new line of argument |G23l.

The book may also appear non-conventional from another point of view,
which incidentally 1s a consequence of the first one. Indeed, another
possible reason of irritation for certain abstractly inclined readers
might be related to the terminology adopted from the original works and
the absence of the previously mentioned ars-pro-artis generalizations so
popular in contemporary mathematics. The resulting formulation of pro-
blems may therefore appear primitive, sometimes even simplistic. The
style may appear less formal and rigorous than that of contemporary
papers about the abstract theory of dynamical systems. The answer to
this eventual remark consits in stating precisely that the book does
not pretend to be a mathematical treatise on dynamical systems (it is
published in a physics collection), because it is not presented in a
sufficiently elaborate and rigorous form. Its objective is far more
modest and consists of :

-(a)~ giving among the basic tools of dynamical systems theory, a large
part of the most efficient ones for solving practical problems (cf.
such problems for example in |G 35\‘G 18"N Sl).

-(b)- understanding dominating internal mechanisms of evolution
processes, and thus preserving a phenomenological transparency through
the simplest possible concrete examples (in the sense of the above
mentioned Birkhoff's c¢itation), from which perhaps "standard" mathemati-
cal theories might be elaborated. Indeed, it can be considered that the
field of "concrete dynamic systems" is constituted by two sets of results.
The first one is related to the study of problems directly suggested by
practice (Physics, Engineering,...). The second one concerns the study

of equations, not directly tied with practice, but having the lowest
dimension, and the simplest structure, which permit to isolate in the
purest form a "mathematical phenomenon", by eliminating '"parasitic
effects" of a more complicated structure. The bringing to light of the
phenomenon of Myrberg's period doubling cascades, and their accumulations,
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from the very simple discrete dynamic system xp4] = xn2 - A (x being

a real variable, A a real parameter, n =0, 1, 2, ...) is of such a

type, by reason of its many practical implications. The:Smale's horseshoe
is also of this type. Consequently, the approach which is adopted is a
geometric one, based on an important number of figures,

-(c)- stimulating some ways of research from the choices of examples.

Is is worth of note that the choice of this less formal style has again
the advantage of optimizing the interdisciplinary communication, even if
it has to appear old-fashioned to abstractly inclined readers.

Beyond as systematic as possible a study of critical cases in the
Ljapunov'sense, and of the crossing through the corresponding bifurca-
tions, it is attempted to realize the mentioned objective by showing
that fwo basic ghactal bifurcations structures play a fundamental role
in the understanding of the dominating internal mechanisms in a wide
class of chaotic behaviours. They were called :

- "box-within-a-box" [(or"embedded boxes" in |G 14|) bifurcations
sthucture structure de bifurcations boltes—emboitées”in French |G 32|
IM 25|, 1975), which corresponds to an ordering of the Myrberg'spectra
{often called in the contemporary literature Feigenbaum's cascades of
bifurcations by period doubling).

- "boxes in fifes" bifurcations structwre (structure de bifur-
cation boites en files"M 27|, 1978) which corresponds to an ordering
of the Farey's sequences of fractions in their lowest terms, and which
was elaborated from an adaptation of the Leonov's results |L 14| about
piecewise linear maps bifurcations structure.

From the knowledge of these structures,it resulted the elaboration of a
particulan symbolism associated with their fractal properties, and the
introduction of new notions such as :

. fuzzy, or chaofic, basin boundary (frontiére floue”|M 23, 1975)

. avernage value cycle (cycle en valeur moyenne”\M 221, 1976) known now
under the denomination phenomenon of intermittency

. avenage value cyelic chaotic segment (segment stochastique cyclique
en valeur moyenne*\M 22\, 1976) related to what it is now called
attractor in cnisis.

. adjoint cycles, and self adjoint cyele |K 3||F 71 (1985) which extend
the possibilities of the symbolic dynamics, and which permits an
understanding of the complex communications between sheets of a
foliated box-within-a-box bifurcation structure |F 7||F 8||F 9.

. the notions related to various non-classical global bifurcations, a
part of them characterizing the transition order —» chaos.

A non negligible part of the book constitutes a synopsis of slowly
accumulated results obtained by the research group of Toulouse which
works about non linear dynamical systems since 1962. The existence of
this group would not be possible without my meeting I. GUMOWSKI #n 1958.
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From this personal event resulted my "initlation" into the famous (but
in this time rather little known in western countries) works of the
Andronov's school |B 141. Since that time, a long friendly collaboration
has permited a continuous and fruitfull action in this field, and many
common publications using Andronov ideas. I. Gumowski is gratefully
acknowledged for his invaluable contribution to the researches of the
Toulouse group, which thus has profited of his interdisciplinary scien-
tific knowledges of exceptional extent. All the researchers who worked,
and who presently are working in this group, are also acknowledged. A
particular mention is made to H. Kawakami, who efficiency collaborated
at this task as a visiting Professor in 1984-1985. His presence gave a
new and important impulsion to the studies related to the two-dimensional
diffeomorphism, when he introduced the above mentioned fruitful notion
of "adjoint cycles" and "self adjoint cycle".

Since 1978, R. Thom has accepted to present some papers of the group in
"Comptes Rendus de 1'Académie des Sciences de Paris". He is warmly
thanked for his interest to the corresponding work, and for some
fruitfull discussions which resulted.

Voluntarily certain subjects are not treated (renormalization, fractal
dimension, applications to practical dynamical problems, ...). For a
usefull complementary information on them, and others developed in this
book, among the numerous available publications, it is suggested to
consult :

* The Neimark's book | N 5| (1972) devoted to the method of point
mappings and their applications to the theory of automatic control and
the theory of dynamical systems. Scientist of the Andronov's school,
Neimark has brought one of the most important contributions to this
question.

* The Guckenheimer and Holmes book ‘G 18 1(1983) dealing with non
linear oscillations, dynamical systems and bifurcations, which is one
of the most interesting publications recently published.

* The Gumowski and Mira's book |G 35| (1980) about chaotic dynamics,
based on the point mappings method, with applications to engineering
problems. The book |G 36| (1980) of the same authors completes the
theoretical aspects of |G 35\.

* The book "Chaos" by Hao Bai-Lin (World Scientific Singapore, 1984),
which is a selection of the classical literature on chaos with 41 papers
among the most known.

* The Holmes and Whitley's paper |H 10| (1984) which constitutes the
most complete study on homoclinic tangency in two-dimensional diffeo-
morphisms. The original study of |H11| (1985) by Holmes and Williams.

* The series of papers by Grebogi, Mc Donald, Kostelich, Ott, and Yorke
lG 6l—lG 10}, IM 3||M 4 ) (1983-1986) representing a very important
contribution to the questions of fractal and fuzzy basin boundaries,



chaotic transients.

* The book "Circuits non linéaires" by M. Hasler and J. Neirynck
(Presses Polytechniques Romandes, 1985) which gives examples of electri-
cal circuits with chaotic behaviours.

* A recentsystematic study of chaotic dynamics in an electrical circuit
can also be found in the paper "The double seroll" by L.O. Chua,

T. Matsumoto and M. Komuro, I.E.E.E. Trans. on Circ. and Syst., wvol CAS
32, n° 8 (1985), 798-813. About such studies, it is worth of note the
important contribution of Hayashi and Kawakami since 1972 (cf. some
references in |K 2| and |M 48]).

* The very recent book "Difference equations and their applications"
by A.N. Sharkovsky, Yu. L. Maistrenko, E. Yu. Romanenko {(Kiev Naukova
Dumka, 1986). Here, new results of the authors, concerning methods of
qualitative study of different classes of difference equations, and
differential-difference equations, are laid.

Not having a wusual practice of english, the quality of the english of
this book is certainly affected. The reader may excuse this fact.

A part of the research of Chapter 6 was executed under contract DRET
n® 85-1303 (French Ministry of Defense).

The most part of the figures were drawn by G. Roussel, and a part of the
text was typed by Mrs C. Grima. These contributions are gratefully
acknowledged.

Toulouse, April 1987 Christian MIRA
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Chapter 1
DYNAMIC SYSTEMS AND RECURRENCES. GENERALITIES

1.1. CONTINUOUS DYNAMIC SYSTEMS AND DISCRETE DYNAMIC SYSTEMS

The content of this monograph concerns evolution processes,
or equivalently dynamic systems. Till now, a generally accepted,
and unambiguous, definition of this notion seems not yet exist.
In a concrete context, that of the experimental physics, for example,
a "dynamic system' is a limited configuration of objects, or again
a more or less subjective description of this configuration in
a verbal, or mathematical, form. Because it is impossible to study
a Limited configuration when it is imbedded into the whole universe,
it is necessary to separate, or isolate, this configuration via an
appropriate artifice consisting at the final step in choosing a
certain number of relevant variables, and parameters. This indispen-
sable process of separation leads to what is called a constraint of
separation, which can have different forms according to the considered
Limited configuration, the desidered mathematical formuLation, and the
nature of the sought solution. In an abstract context, it is supposed
that the constraint of separation is known, and the expression “dynamic

system” simply designates the equation of the motion |G 33].

A first possible formulation of motion eguations is that ordinary
differential equatjons with real variables, the time t being the

independant variable, in one of the two explicit forms :

1}
b3

a.1n dxildt = fi(x1, Xop anes x), 1 =1, 2, sa-, M, xi(to)
1.2 dx./dt

n

I}
b3

fi(x1, Xop =ams % t), i=1,2,..-,m, xi(to)

n’



The first one is called a m-dimensional autonomous equation and the
second one a m-dimensional non-autonomous eguation. When the existence
and uniqueness conditions are satisfied for the initial condition
xi(to)’ the solution is a continuous function of t, and corresponds
to what is called a .phase trajectory,or a motion, in the phase space

of coordinates Xgr wwes Xpo The equations (1.1), (1.2} also can be

represented in a vectorial form X* = F(X), X* = F(X, t), X*® = dX/dt.

A second possible formulation is that of recurrences, or eguiva-
lently point-mappings, maps, iterations (these forms are indifferently
used in this book), for which the time t is no longer a continuous
independant variable but a sequence of integers, n =0, 1, 2, ...

(discrete time), in one of the two explicit vectorial forms :

(1.3) X, 41

F(Xn), or X T xn’ X (n=0)

H
>

n+1

{1.4) X F(Xn, n), or X Tn Xn’ X(n=0) o

n
>

nt1 nt1

X being a real vector with components (x1, “any xp), F a single valued
vectorial, function of X. In (1.3) (autonomous equation), T is the

p-dimensional point-mapping which gives the point X from the point

+
Xn, and which is independant of n. In (1.4), {(non augo;omous equation),
the point-mapping depends on n. When existence and uniqueness condi-
tions are satisfied for the initial condition Xor the solution

X, = Xin, Xo) is a sequence of points (iterated seguence, or orbit,

or discrete phase trajectory) in the p-dimensional discrete phase plane.
The recurrences (1.3), (1.4) can be directly the mathematical models

of a class of dynamic systems which are by nature of the discrete type,
i.a. the available information about their states is only obtained in

a sampled form. However, the autonomous recurrence (1.3) plays a
fundamental role, when it is associated with an autonomous differential
equation (1.1), the dimension p of (1.3) being not higher than (m-1),

or with (1.2) when the fi are periodical functions of t with a fixed
period. In this case (1.3) is the result of the application of the
Poincaré's method of section. The reduction of the effective dimension

of the differential equation, which is so obtained, makes easier its



study. Details about this method will be considered in an other para-
graph. It should be stressed that the inverse process, consisting in
the construction of a differential equation from a recurrence (1.3), is
generally not possible. The functional space of recurrences is thus
much richer than that of differential equations, and this richness
induces some far—reaching theoretical and practical properties |G 35I|
|6 36].

1.2. BIRKHOFF CLASSIFICATION OF DYNAMIC MOTIONS. IMPREDICTIBILITY OQF
CHAOTIC MOTIONS

In his book "Dynamical Systems" | B 9| Birkhoff wrote : "the
final aim of the theory of dynamical systems must be directed towards
the qualitative determination of all possible types of motions and the
interrelations of these moticons”. Going towards this purpose, by using
ideas developped by Poincaré, as a first step Birkhoff proposed en 1927
a classification of dynamic motions, which has been refined by Andronov
in 1933 with the diagram of fig. 1.1. In this diagram, starting from
the lower part up to the top, an increase of the structural complexity
of motions manifests itself as a graduat transition from orderly to

chaotic (erratic, or stochastic) motions.

It is recalled that steady states of guasi periodic type corres—
pond to oscillations containing a finite number M of mutually incom-
mensurable frequencies. Steady states of almost periodic type correspond
to oscillations containing infinitely many mutually incommensurable
frequencies (M > ). Let us denote by X(t, Xo) a dynamical system
defined in some metric space R, the trajectory of which passes through

the point Xo'

The motion X(t, X ) is called recurrent, if for any ¢ > Q there
can be found a t(g) > 0 such that any arc of the phase trajectory of
time length T approximates the entire trajectory with a precision to
within €. In other words, whatever may be the numbers ty, ty, there can
be found a number ts such that ty <ty < ty*1, and p[}(t1,xo),
X(t3,xo)] < ¢, where p(a,B) is the distance between o and B |N 8|.



