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Introduction

Let K be a p-adic field with finite residue class field of g elements. Let G be a
connected split reductive group over K with connected center. Let Z be an Iwahori
subgroup of G and T the ‘diagonal’ subgroup of Z (in a suitable sense). The group
Ng(T)/T (here Ng(T) is the normalizer of T in G) is an extended affine Weyl group
W (i.e. W = Q x W’ for certain abelian group 2 and for certain affine Weyl group
W'). It is known that G = [J ey ZwZ and one can define an interesting associative
ring structure on the free abelian group H, with basis ZwZ, w € W (see [IM]). The
ring Hy is an affine Hecke ring and we call H; = H; ® C an affine Hecke algebra.
According to Borel [Bol] and Matsumoto [M], the category of admissible complex
representations of G which have nonzero vectors fixed by Z is equivalent to the
category of finite dimensional representations (over C) of Hy. Thus an interesting
part of the study of representations of p-adic groups can be reduced to that of affine
Hecke algebras.

According to a conjecture of Langlands (see [La]) the irreducible complex represen-
tations of G should be essentially parametrized by the representations of the Galois
group Gal(K/K) into the complex dual group G*(C) of G (in the sense of [La]):
Gal(K/K) — G*(C).

Let T' be the quotient group of Gal(K/K) corresponding to the maximal tamely
ramified extension of K. The group I' has the generators F' (Frobenius) and M
(Monodromy), subject to the relation FMF~! = M. According to the conjec-
ture, the irreducible complex representations of G which have nonzero vectors fixed
by the Iwahori group Z should be essentially parametrized by the homomorphisms
' - G*(C). More exactly, Langlands’ original conjecture says that the represen-
tations should roughly be parametrized by the conjugacy classes of semisimple ele-
ments in G*(C). A later refinement of the conjecture, due independently to Deligne
and Langlands, adds nilpotent elements in the picture. Thus the representations
considered should be essentially parametrized by the conjugacy classes of the pair
(s, N) such that Ad(s)N = ¢N, where s is a semisimple element of G*(C), N is a
nilpotent element in the Lie algebra g of G*(C), and we say two pairs (s, N), (s',N')
are conjugate if s’ = gsg~!, N’ =Ad(g)N for some g € G. For group GL,(K) this
was proved by Berstein and Zelevinsky [BZ], [Z]. For general case, Lusztig (see [L4])
added a third ingredient to (s, N), namely an irreducible representation p of the
group A(s,N) = Cg(s) N Cg(N)/(Cs(s) N Cg(N))° (here G = G*(C) and Cq(+)
denotes the centralizer in G) appearing in the representation of the group A(s, N)
on the total complex coefficient homology group of B}, here B}, is the variety of
Borel subalgebras of g containing N and fixed by Ad(s).

Now the category of admissible complex representations of G which have nonzero
vectors fixed by Z is equivalent to the category of finite dimensional representations
(over C) of the Hecke algebra H, with respect to the Iwahori group I (see [Bol,
M)]). Therefore the conjecture can be stated as

(¥) The irreducible representations of H, are naturally 1-1 correspondence with
the conjugacy classes of triples (s, N, p) as above.
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The conjecture (*) was proved by Kazhdan and Lusztig in [KL4]. Actually they
proved that (*) is true when g is not a root of 1 (one can define Hy for arbitrary
g € C*). In [Gl] Ginsburg also announced a proof, but the proof contains some
errors since the main result is not correct as stated, see [KL4, p.155]. However the
work [G1] contains some very interesting ideas. Combining [KL4] and [G1] we can
prove that (%) is true if the order of g is not too small (see chapter 6, Theorem 6.6,
actually we get more). In chapter 7 we shall show that (*) is not true if ¢ is a root
of 1 of certain orders. It is expected that (*) is not true only when g is one of those

roots of 1 (see [L17]).

In this book we also show that cells in affine Weyl groups are interesting to under-
stand representations of affine Hecke algebras.

Now we explain some details of the book.

In chapter 1 we give the definitions of Coxeter groups and of Hecke algebras. We
also recollect some definitions and results in [KL1, L6], which will be needed later.
In chapter 2 we give the definitions of extended affine Weyl groups and of affine
Hecke algebras, and recall some results on cells in affine Weyl groups. Following
Berstein, the center of an affine Hecke algebra is explicitly described. In chapter 3
we describe the lowest generalized two-sided cell of an affine Weyl group (Theorem
3.22). Naturally in chapter 4 we generalize Kato’s result on g-analogue of weight
multiplicity (see [Ka2]).

In chapter 5 we recall some work on Deligne-Langlands conjecture for Hecke algebras
by Ginsburg [G1-G2], Kazhdan and Lusztig [KL4]. We give some discussions to the
standard modules (in the sense of [KL4]). For type A, it is not difficult to determine
the dimensions of standard modules. We also state two conjectures, one is concerned
with the based rings of cells in affine Weyl groups, and another is for simple modules
of affine Hecke algebras with two parameters, which is an analogue of the conjecture
(x). In chapter 6 we introduce an equivalence relations in T x C*, where T is a
maximal torus of a connected reductive group over C. Combining some properties
of the equivalence relation, results of Ginzburg and of Kazhdan & Lusztig in chapter
5, we prove that (*) is true when the order of g is not too small (Theorem 6.6). In
chapter 7 we show that if ¢ is a root of 1 of certain orders the conjecture (*) is not
true by using some results in [Ka2] and in chapter 6.

In chapter 8 we unify the definitions of principal series representations in [M, 4.1.5;
L2, 8.11] by means of two-sided cells of an affine Weyl group and also give some
discussions to the representations. In chapter 9 we are interested in relations among
affine Hecke algebras of the same root system. In chapter 10 we give some discussions
to certain remarkable quotient algebras of H,.

The chapters 11 and 12 are based on preprints “The based rings of cells in affine
Weyl groups of type G2, B;” and “Some simple modules of affine Hecke algebras”
respectively. In chapter 11 we verify the conjecture in [L14] for cells in affine Weyl
groups of type Gz, B;. In chapetr 12 we show that the conjecture in [L14] is
true for the second highest two-sided cell in an affine Weyl group. Once we know
the structures of the based rings we can know the structures of the corresponding
standard Hy-modules. The explicit knowledge of based rings provides a way to
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compute the dimensions of simple Hy-modules and their multiplicities in standard
modules, also can be used to classify the simple Hg-modules even though g is a root
of 1. In chapter 11 we work out the dimensions of simple H,-modules for type A,.
An immediate consequence is that for type A; we see Hy % H; = C[W] whenever
q is not equal to 1. This leads to several questions. ’

I would like to thank Professor T.A. Springer for some helpful conversations. I am
grateful to the referees for helpful comments. I wish to thank Professor J. Shi for
several helpful comments. I am indebted to Ms. D. Baeumer for the helps in prepar-
ing the A, S-TgX file of the book. Particular thanks are due to the series editors
of the Lecture Notes in Mathematics for kind and helpful correspondences. To my
pleasure, after the acceptance Professor F. Hirzebruch kindly permits to publish the
book as one volume of the Bonn subseries of Lecture Notes in Mathematics.

This work was done during my visit at the Institute for Advanced Study, Princeton,
1991-92, and during my visit at Max-Planck-Institut fiir Mathematik, Bonn, 1992-93
and December 1993 - September 1994. I acknowledge with thanks the NSF support
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1. Hecke Algebras

In this chapter we give the definitions of extended Coxeter groups and of their Hecke
algebras and provide a few examples. Some definitions (such as these of Kazhdan-
Lusztig polynomials and cells) and results in [KL1, L6] are recalled. We also show
how to apply the definitions in [L6], which are generalizations of those in [KL1].
Several questions are proposed. We refer to [B, Hu| for more details about Coxeter
groups and their Hecke algebras.

1.1. Basic definitions. A Coxeter group is a group W’ which possesses a set
S = {si}ier of generators subject to the relations

s =1, (sis;)™9 =1 (i #3),

where m;; € {2,3,4,...,00}. We also write m,, for m;; when s = s; and t = s;.

We call (W', S) a Coxeter system and S the set of distinguished generators or the
set of simple reflections. Let [ be the length function of W’ and < denote the usual
partial order in W'.

In Lie theory we often need to consider extended Coxeter groups. If a group Q acts
on a Coxeter system (W', S), we then define a group structure on W = Q x W' by
(w1, w1)(we, we) = (wWiw2,w; ' (w1 )ws). The group W is called an extended Coxeter
group. For convenience we also call (W, S) an extended Coxeter group and (W', S)
a Coxeter group. The length function / can be extended to W by defining l(ww) =
{(w), and the partial order < can be extended to W by defining ww < w'u if and
only if w = w’, w < u, where w’,w €  and w,u € W’. We denote the extensions
again by [ and < respectively.

1 1 1
Let q3, s € S be indeterminates. We assume that q2 = q7 if and only if s,¢ are
11
conjugate in W. Let A = Z[q?,qs ?]ses be the ring of all Laurant polynomials in
1
q?, s € S with integer coefficients. The (generic) Hecke algebra H (over A) of W

is an associative A-algebra. As an A-module, H is free with a basis T, w € W,
and multiplication laws are

(1.1.1) (T, —q)(To+1) =0, ifs€S;  ToTu=Tou ifl(wu)=1(w)+I(u).

The generic Hecke algebra of W actually can be defined over Z[q,]ses, but it is
convenient to define it over A for introducing Kazhdan-Lusztig polynomials and for
defining cells in W.

Let H' be the subalgebra of H generated by T,, s € S. Then the algebra H is
isomorphic to the “twisted” tensor product Z[2] @z H' by assigning Ty — w Q@ T,
where Z[] is the group algebra of Q over Z, and the multiplication in Z[Q] ®z H'
is given by

(W@ Tw)(w @Ty) = ww' @ Ty-1(y) Tu-

1



Note that s,t € S may be conjugate in W but not conjugate in W', thus H' may
not be the generic Hecke algebra of W’ in the previous sense.

For an arbitrary A-algebra A’, the A’-algebra H ® 4 A’ is called a Hecke algebra.

Convention: For each element w in W we shall denote the image in H ® 4 A’ of T,
by the same notation.

1.2. Two special choices of A’ are of particular interests.

(a). Let q* be an indeterminate and let A = Z[q?,q~ %] be the ring of all Laurant

polynomials in q3 with integer coefficients. Choose integers ¢,, s € S such that

cs = ¢; whenever s and ¢ are conjugate in W. There is a unique ring homomorphism
1

from A to A such that q? maps to q % for every s € S. Thus A is an A-algebra.
The multiplication laws in the Hecke algebra H ® 4 A are (recall the convention at
the end of 1.1)

(1.2.1) (Ty—q*)(Ty+1) =0, ifs€S;  ToTu=Tpu, ifl(wu)=1(w)+(u).

(b). When all integers ¢, (s € S) are 1, we denote the Hecke algebra H @4 A by H.

The multiplication laws in H are
(1.2.2) (T, —q)(T, +1) =0, ifseS; TwTy = Twu, if l(wu) =1(w) +I(u). |

Sometimes H is also called the generic Hecke algebra of W (with one parameter).
By now the Hecke algebra H and its various specializations H ® 4 A’ are the most
extensively studied Hecke algebras.

There is also a slight generalization of the Hecke algebra H. Let R be a commutative
ring with 1. For every s in S, choose u,, v, € R such that u, = u¢, v, = v; whenever
s, t are conjugate in W. Then there exists a unique associative R-algebra #, which
is a free R-module with a basis T,,, w € W and multiplication is given by

12.3) T =u,T +v,, ifs€S; T.T.=T.,,, ifl(wu)=I(w)+I(u).
s wu

(see, e.g. [Hu]). It is often tha.t the R- algebra H is actually a Hecke algebra. Suppose
that v, has a square root v, in R and v, is invertible in R. Further we assume that
there exists an invertible element uf,f € R such that

(1.2.4) ul

Set TV := u’2v, ’T’ then T!'*> = (u, — 1)T” + u,. In this case the algebra H is a
Hecke algebra in the sense of 1.1. ’

In Lie theory there are also other interesting algebras of Hecke type, see for example,
[BM, Ca, MS].

1.3. Examples of Coxeter groups. It is convenient to represent a Coxeter
system (W', S) by a graph ¥, usually called the Coxeter graph of (W’,S). The
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vertex set of ¥ is one to one correspondence with S; a pair of vertices corresponding
to s;,s; are jointed with an edge whenever m;; > 3, and label such an edge with
m;; when m;; > 4. Thus the graph ¥ determines (W', S) up to an isomorphism.

A Coxeter system (W', S) is called irreducible if for any s,t € S we can find a
sequence s = lg,t1, - ,tx =t in S such that my, ¢, > 3 (i.e. titiy; is not equal
to tit1t;) for 1 = 0,1,...,k — 1. We also call W’ an irreducible Coxeter group when
(W', S) is irreducible. Obviously every Coxeter group is a direct product of some
irreducible Coxeter groups.

The most important Coxeter groups in Lie theory are Weyl groups and affine Weyl
groups. They are classified. The Coxeter graphs of irreducible Weyl groups and
irreducible affine Weyl groups are as follows.

>1). o o o
Type An (n 21) T 2 n—2 n—-1 .
Type By (n > 2 !
ype B (n 2 2). 7 2 n—2 n—1 .
n—1
[e]
Type D, (n > 4). 0 0 o~ °
2
[e]
Type Es. ¢ T ¢ ¢ ¥ 3
2
[e]
Type Er. %%
2
[e]
Type Eo ¥,
Type F. !
ype Fe — %3
6
Type Gs. g—70



Type A;.

Type A, (n >2).

Type Bz = C~'2.

Type B, (n>3).

Type Cp (n > 3).

Type D, (n > 4).

Type Es.

Type E.

Type Es.

Type Fy.

oo

=0
N O

[=Xe}
N C

[eN=]

N C

owN

wO
[ ¥}
O

ow

[=]e]
w
'S

»~O— O0O—— 0O

»0



Type Ga. o—o0—o0

1.4. The Weyl group of type A, is just the symmetric group G4 of degree n + 1.
One may choose {(12), (23), --- ,(n,n+1)} as the set of simple reflections of G, 41.

Except Weyl groups, the other irreducible finite Coxeter groups are dihedral groups
I (m) (m = 5 or m > 6, when m = 3,4,6, I;(m) are Weyl groups) and Coxeter
groups of type H3 or Hy. Their Coxeter graphs are as follows.

Type Hy. o o 0

1 2 3 4
5
Type Hs. 3
m
Type I(m). SR

When (W', S) is crystallographic (i.e., m;; = 2,3,4,6, 00 for arbitrary s;,s; in S),
W' can be realized as the Weyl group of certain Kac-Moody algebra (see [K]). Thus
we have a Schubert variety B,, for each element w € W’. This is a key to apply the
powerful intersection cohomology theory to the Kazhdan-Lusztig theory.

1.5. Examples of Hecke algebras. (a). Let G be a Chevalley group over a finite
field of g elements. Let B be a Borel subgroup of G and T the maximal torus in
B. Then the group Wo = Ng(T)/T is a Weyl group. We have G = |J,,cw, BwB.
Let H be the free Z-module generated by the double cosets BwB, w € Wy. We
denote T, the double coset BwB when it is regarded as an element in H. Define
the multiplication in H by

(151) TeTy = Z mw,u,vTvv

where the structure constants m,, 4, are defined as the number of cosets of the form
Bz in the set Bw™!Bv N BuB:

My,u,v = |[Bw™'BvN BuB/B|.

Then H is an associative ring with unit T,, where e is the neutral element in Wj.
Moreover we have

(1.5.2) (Ts—q)(Ts+1) =0, ifs€ So; TwTy = Twu, ifl(wu) =1l(w)+1(u),
where Sy is the set of simple reflections in Wp. (See [I]).

It is well known that H ®z C ~ Endl§, where 1§ stands for the induced represen-
tation of the unit representation 1p (over C) of B (see [I, C2, Cu]). Thus part of
the study of 1§ can be reduced to that of H ®z C.
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(b). Let K be a p-adic field such that its residue field k contains ¢ elements. Let G
be a Chevalley group over the field K. Let B be an Iwahori subgroup of G and T
the ‘diagonal’ subgroup of B (in a suitable sense). Then the group W = Ng(T)/T
is an extended affine Weyl group (i.e., there is a commutative group Q which acts on
an affine Weyl group (W', S) such that W ~ Q x W', see 2.1 for definition). As the
above example we have G = |J,c BwB. Let H be the free Z-module generated
by the double cosets BwB, w € W. We denote T, the double coset BwB when it
is regarded as an element in H. Define the multiplication in H by

(153) TwTu = me,u,vTvv

where the structure constants m., ., are defined as the number of cosets of the form
Bz in the set Bw™!Bv N BuB:

My, w0 = |[Bw™'BvN BuB/B|.

Then H is an associative ring with unit 7T,, where e is the neutral element in W.
Moreover we have

(1.54) (T, —¢)(T, +1) =0, ifseS; TwTy = Ty, if l(wu) = l(w) +1(u),
where S is the set of simple reflections in W. (See [IM, p.44]).

It is known that the category of admissible complex representations of G which
have nonzero vectors fixed by B is equivalent to the category of finite dimensional
representations (over C) of H®zC (see [Bol, M]). Thus the representations of H®zC
may be ragarded as an interesting part of the representation theory of p-adic groups.

1.6. Kazhdan-Lusztig polynomials. The work [KL1] stimulates a lot of work
and deeply increased our understanding of Coxeter groups and of Hecke algebras.
The key role is the Kazhdan-Lusztig polynomials. In this section we recall some
definitions and results in [KL1].

We keep the notations in 1.1 and in 1.2 (b). Thus (W', S) is a Coxeter system,
W = Q x W' is an extended Coxeter group and H is the generic Hecke algebra of
W over A = Z[q%,q"%).

Let a — a be the involution of the ring A defined by q% = q~%. This extends to an
involution h — h of the ring H defined by

ZawTw —ZawT 21, Gy € A.

Note that T, is invertible for any w € W since T, ! =q~'T, + (@' —1)for s € §
and T = T,,-1 for w € Q. Then (see [KL1, (1.1.c)]):

(a) For each w € W, there is a unique element Cy, € H such that

éw = va



_Hw)
Co=q 2 Z Py Ty,
y<w

where P, ,, € A is a polynomial in q of degree < %(l(w) —l(y)—1) fory<w
and Py, = 1.

The assertion (a) is equivalent to the following result.

(b) For each w € W, there is a unique element C;, € H such that C), = C}, and
Cl, = EySw(—1)'(“’)_'(y)quiu'lq"'(”)l_’y,wTy, where P, ,, € A is a polynomial in
q of degree < 1(I(w) —Il(y) — 1) for y < w and Py, = 1.

Note that our notations Cy, and C}, exchange these in [KL1] since we shall mainly
use the elements C,,.

Obviously the elements C,, w € W form an A-basis of H and the elements Cl
w € W also form an A-basis of H. They are related by three involutions.

(c) Let 5 be the involution of the ring H given by

J(Z awTw) = Z aw(_q)_l(w)Twa

then C/, = (—=1)"®);(C,). (See [KL1]).
(d) Let ® be the involution of the ring H defined by

8(q¥) = —q, ®(Ty) = (—q)'W T,

then C}, = ®(Cy). (See [L11, 3.2, p.259)).
(e) Let k be the involution of the A-algebra H given by

(Y awTu) = ) auw(-q) T L,

then C., = (—=1)™k(Cy).
We give a proof of (e). It is easy to see that

k() awTw) =3 awTw).

That is, k is the composition of j and =. Since C,, = C,,, according to (c) we get

k(cw) = ](Cw) = J(Cw) = (—I)I(W)C:u'

Note that k is an involution of A-algebra, this fact is useful in transferring some
properties of C}, to Cy.

The polynomials P, ,, are called Kazhdan-Lusztig polynomials. For y < w we have
P, = p(y, w)q 3 (@) =1®)=1) 4 lower degree terms. We say that y < w if u(y, w) # 0,
we then set p(w,y) = p(y,w).



1.7. Motivated by his definition of canonical bases of quantum groups (see [L19]),
Lusztig gave another construction of the elements C,, C,,. Consider the Z[q_% -

submodule £ of H spanned by Ty = q_uzﬂTw, w € W and the Z[q%]-submodule
L' of H spanned by T,,, w € W, then (see [L20])

(a) The proje_ction m: L L/ q_%é gives rise to an isomorphism of Z-module
m: LNLSL/q 3L and 77 (n(Tw)) = Cu.

(b) The projection 7' : L' — L'/q2 L' gives rise to an isomorphism of Z-module
m: L'NL'SL /qiL and ) " (7' (Tw)) = CL.

1.8. The elements C,, have the following properties (see [KL1]):

(a) For s € S we have

(q% +q~%)Cy, if sw <w

CiCuw=1( Couwt+ Y, ply,w)Cy, if sw>w.
<

(q% + q~%)Cy, if ws <w

CuwCs =1 Cus+ Y, p(y,w)Cy, ifws>w.
yesy

They are equivalent to the following recursion formulas of the Kazhdan-Lusztig
polynomials.

(b) Assume that for s,t € S we have sw > w and wt > w, then

l-a a L(w)=1(z)+1
Py,aw =q Psy,w +q Pva - Z /"(va)q 2 Py,za (y < sw)

z
y<z<w
82<2

wherea=1if sy<y, a=0if sy > y; and Py 0w = Poy sw-

l1—a d (w)=I(z 1
Py.wt =q Pyt,w+q Py,w_ Z #(Z»w)q 2 Py.zv (y < wt)

z
y<z<w
2t<z

wherea=1ifyt <y, a=0if yt > y; and Py wt = Pyt we-

1.9. When (W', S) is a finite Coxeter group or a crystallographic group, it is known
that the coefficients of Py, are non-negative. This is proved in [KL2, L11] when
(W', S) is crystallographic. For Hy, Hy it was proved by Goresky [Go] and Alvis [A].
For dihedral groups I, it is trivial since Py, = 1 for any y < w. It was conjectured
in [KL1] that for an arbitrary Coxeter group the Kazhdan-Lusztig polynomials have
non-negative coefficients.

1.10. Question. (i). It is known that the Kazhdan-Lusztig polynomials of crys-
tallographic Coxeter groups are related to middle intersection cohomology groups
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of Schubert varieties. Now what polynomials are related to other intersection coho-
mology groups of Schubert varieties?

(ii). If we loose the restriction on the degree of Py, to degP, ., < (l(w) —l(y)),
what happen for the Kazhdan-Lusztig polynomials and the elements C,.

1.11. Cell For each element w in W we set
L(w):={s €S | sw < w},
R(w):={s€ S| ws <w}.

Let w and u be elements in W', we say that w < u (resp. w < u; w < u) if there
L ‘R LR

exists a sequence w = wp, Wy, ...,wr = u in W’ such that for : = 1,2, ...k we have

p(wi-1,w;) # 0 and L(w;_1) € L(w;) (resp. R(wi-1) € R(w;); L(wi—1) € L(w;) or

R(wi—1) € R(w;)). Then for any w,w’ € Q we say that ww < w'u (resp. ww < uw’;
L R

ww < w'u)if w <u(resp. w <u;w < w).
LR L R LR

For elements z and y in W we write that ¢ ~ y (resp. 2 ~y; ¢ ~ y)ifc <y <z
L R LR L L

(resp. @ <y < z; ¢ < y < z). The relations <, <, < are preorders in
R~ R Lr ° LR I R _LR ]
W. And the relations 5 o v are equivalence relations in W, the corresponding
equivalence classes are called left cells, right cells, two-sided cells of W, respectively.
The preorder < (resp. <; <) induces a partial order on the set of left (resp. right;
L R LR
two-sided) cells of W, we denote it again by < (resp. <; <).
L R LR

When W = W' is a Weyl group, the definitions of left cell and two-sided cell
coincide with the definitions given by Joseph [J1-J2]. The cells in Weyl groups
were extensively investigated by Barbasch, Lusztig, Joseph, Vogan, etc., and play
an important role in the representation theory of finite groups of Lie type (see [L7])
and in the theory of primitive ideals of universal enveloping algebras of semisimple
Lie algebras.

For affine Weyl groups, the structure of left cells and two-sided cells are determined °
for type A, (see [Sh1, L8]), rank 2, 3 (see [L11, Bél, DJ]). Recently Shi found an
algorithm, then he and his students determined the structure of cells in affine Weyl
groups of type By, Cy, Dy (see [Sh4, Sh5]). For type Dy, see also [Ch]. In [L11-L14]
Lusztig obtained a series of important results concerned with cells in affine Weyl
groups. -

1.12. a-function For an extended Coxeter group W the function a : W — N
was introduced in [L11] and is a useful tool in cell theory and related topics.
Given w,u € W, we write

chu = Z hw,u.vav hw,u,v €A
veEW



For every v € W, we define a(v)=the minimal non-negative integer i such that
Q% hy,u, is in Z[q?] for any w,u € W. If such i doesnot exist, we set a(v) = oo.
For a finite Coxeter group, the function a is always bounded. A non-trivial fact is

that a is bounded for an affine Weyl group (see [L11]). In [L12] Lusztig obtained
some interesting results provided that a is bounded and W’ is crystallographic.

Assume that (W', S) is a crystallographic group, then all h,, , , are Laurant poly-
nomials in q¥ with the same purity and have non-negative coefficients (see [L11]).
It seems natural to hope such property holds for arbitrary Coxeter groups.

Here are four questions.

1.13. Question. (i). Find out all Coxeter groups whose a-functions are bounded.

(i1). Assume that the a-function of a Coxeter group W is bounded and let ag be the
maximal value of a on W. Is the set {w € W | a(w) = ao} a two-sided cell of W?

(iii). Find out a Coxeter group W' such that there exists some w € W' with
a(w) = oo.

(iv). Maybe the a-function of a Coxeter group W is always bounded and the maximal
value is equal to the length of the longest elements of certain finite Coxeter (or
parabolic) subgroups of W.

Generalized Cells

1.14. Lusztig generalized the definition of cells in [KL1] to the cases of simple
reflections being given different weights (see [L6]). Strangely the interesting gener-
alization is less developed. In the rest of the chapter we shall give some discussions
to the generalization. We first recall the definition, then show how to apply the
definition.

Let (W', S) be a Coxeter system and W = Qx W’ be an extended Coxeter group. Let
¢ : W — T be a map from W into an abelian group I' such that p(ws1sz - - spw') =
w(s1)p(s2) - - - ¢(sk) for any reduced expression sys3 - - - sk in W’ and w,w’ in Q. Note
that ¢(w) = p(w’) whenever w,w’ are conjugate in W. For each w in W we shall

write q{% for ¢(w). Let H, be the Hecke algebra of W with respect to ¢; this is
an associative algebra over the group ring Z[[']. As a Z[[']-module, it is free with a
basis Ty, w € W. The multiplication is defined by

(1.14.1) (To—q,)(To+1) =0, ifs€S;  TuTy=Tuu, ifl(wu)=1(w)+I(u).

When q,% = qt% if and only if s,t are conjugate in W and I is a free abelian group
with a basis q_,%, s € S, the algebra H,, is canonically isomorphic to the algebra
‘H in 1.1 if we identify Z[I'] with A. When q,% = q,% for any s,t € S,and ' is a
free abelian group generated by q,% , the algebra H,, is canonically isomorphic to the
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