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Preface

This book introduces the reader to research work on a particular aspect of
rotating fields in general relativity. It should be accessible to someone with
an elementary knowledge of general relativity, such as that obtained in an
undergraduate course on general relativity at a British university. A person
with some maturity in mathematical physics may be able to follow it
without knowing general relativity, as [ have given a brief introduction to
the relevant aspects of general relativity in Chapter 1.

My intention has been to write a short book which can provide a
relatively quick entry into some research topics. I have therefore made only
a brief mention of some topics such as the important group theoretic
generation of solutions by Kinnersley and others. A significant part of this
book deals with interior solutions, for which these techniques are not yet
applicable. I have also not touched upon Petrov classification of solutions
as this is marginal to the problems considered in this book. The connecting
link of the topics considered here is the Weyl-Lewis—Papapetrou form of
the stationary axially symmetric metric, which is derived in detail in
Chapters 1 and 2.

A significant part of the book is based on my own work and for this
reason the book may be considered as too specialized. However, all
rescarch 1s specialized and [ believe it is instructive for the beginning
research worker to be shown a piece of work carried out to a certain stage of
completion. Besides, I have tried, wherever possible, to bring out points of
general interest.

In the earlier parts of the book I have usually carried out calculations
explicitly. In the later parts I have left gaps which the reader is urged to fill
him or herself. I frequently found myself running out of letters to use as
symbols. I have sometimes used the same letters in different parts of the
book, the different uses of which should be obvious from the context. T hope
the reader will not mind this minor inconvenience.
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Introduction

1.1. Newtonian theory of gravitat}on

In Newton’s theory of gravitation any sufficiently small piece of matter
attracts any other sufficiently small piece of matter with a force which is
inversely proportional to the square of the distance between the two nieces
and which is proportional to the product of their masses. The constant of
proportionality is G, Newton’s gravitational constant. In this book we shall
use units such that G = 1. From the inverse square law one can deduce that
the gravitational field of a distribution of mass is described completely by a
single function ® of position, say of cartesian coordinates (x,y,z) and
possibly of time ¢, which satisfies Poisson’s equauon inside matter, as
follows:

- ‘)2 62 N2 .
Vzcbs(‘ taat ¢ >¢(xy )= —drelx, pzt), (1)

where ¢ is the density of mass,-which is also a function of x, y, z and possibly

t. Outside matter, in empty space, ® satisfies Laplace’s equation, as follows:

Vid =0, : (1.2)

a solution of which we will refer to as a harmonic function. The function ® is

referred to as the gravitational potential and has the physical significance

that a particle of mass m placed in a gravntatlonal field at the point {x, y, z)
experiences a force F given by

F=mVo. (1.3)

Equation (1.1) can be solved using the standard integral representation

Xy, 2, tydx" dy’ dz’

X, ¥, 2, t 3

Py f[(x—x)zﬂy VP +(z-2)%12

where the integration is over the region in which ¢ is non-zero. However,

(1.4) is usually difficult to evaluate and other simpler methods are used to

£1.4)



2 Introduction

arrive at ‘he potential ®, especially in situations involving symmetries.

In this book we shall be concerned with situations of axial or cylindrical
symmetry. These symmetries have to be defined rigorously in generai
relativity, but it is useful to have in mind the simpler definitions of these
symmetries in the Newtonian situation. Even here we shall take a somewhat
intuitive approach lacking in rigour but it will be simple and adequate for
our purpose. We first define cylindrical polar coordinates. A point P has
cvlindrical polar coordinates (p, ¢, z) related to its cartesian coordinates
{x, y,2) as follows:

x=pcos¢, y=psindg. (1.5)
Thus p is the distance of the point P from the z-axis and ¢ is the angle which

Fig. 1.1. lustration of cylindrical polar coordinates.

A
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1.1 Newtonian theory of gravitation 3

the plane containing the z-axis and the boim P makes with the plane y =0
(Fig. 1.1). The angle ¢ is often referred to as the azimuthal angle. A scalar
function of position f(x, y, z), is said to be axially symmetric (with the z-axis
as the axis of symmetry) if, when expressed in terms of coordinates (p, ¢, z), it
is independent of ¢, that is,

Sf(pcos ¢, psin,z) = F(p, 2), (1.6)

where F(p, z) is a function of p and z only. Thus axially symmetric functions
~ have rotational symmetry about the z-axis. There are different ways of
interpreting this last statement. Consider a circle passing through P with its
centre on the z-axis and its plane parallel to the plane z=0. An axially
symmetric function has the same value at all points of this circle, since this
circle is described by fixed values of p and z. Thus the surfaces F(p,z)=
constant have the property that they look the same in position and shape if
they are rotated by any given angle about the z-axis, that is, they are
invariant under a rotation of the coordinate system about the z-axis.

Consider now a three-dimensional vector field H(x, ¥, 2) with compo-
nents H®, HY, H® along the x, y and z-axis respectively, that is,

H(x, y,2) =iH"(x, y,2) + jH"(x, y, 2) + kH"(x, y, 2), )
where i, j, k are unit vectors along the x, y, z axes respectively. The vector
field H is axially symmetric if its components when expressed in terms of the

triad of unit vectors (i, i, k) are independent of ¢. The unit vectors |“” and
i'¥ are defined as follows: '

l(ﬂ)=|cos¢+jsjn¢’ i = —ising + jcos¢. _ ‘(18)

The vector i points radially away from the z-axis and is parallel to the
plane z =0, while i is also parallel to this plane and is perpendicular to i"”
pointing in the direction of increasing ¢ (Fig. 1.1). Thus H is axially
symmetric if

H =i H%Yp, ) + IH®(p, z) + kH"Yp, 2). (1.9)

Note that if H is axially symmetric (so that H®), H*, H*® are independent of
¢) its components in terms of i, j, k do depend on ¢ in the following simple
manner:

"H = icos pH'® — sin H'") + Ksin H' + cos pH'") + kH™. (1.10)

From (1.9) it is clear that an axially symmetric vector field is in a suitable
sense invariant under rotation of the axes about the z-axis by any given
angle.

...Cylindrical symmetry can be defined in the same manner as above if we
make the various functions mdcpendcn( of z in addition to being
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independent of ¢. Thus a scalar function f(x, y)( (which is independent of z)
is cylindrically symmetric (with the z-axis as the axis of symmetry) if, when
expressed in terms of coordinates p, d),‘ z 1t is a function of p only:

f(pcos ¢, psm¢) F(p). _ _(1.11)

Thus if @ afd b are constants, the function ap? is cylindrically symmetric but
the function ap? + bz2, although axially symmetric, is not cylindrically
symmetric. The vector field H is cylindrically symmetric if the components
H® H* and H'® are functions of p only. Cylindrically symmetric systems
are invariant not only under a rctation about the z-axis, but they are also
invariant under a translation parallel to the z-axis. These remarks may seem
obvious but they help to fix ideas for the more complicated situations
encountered later in the book and besides, confusion does arise sometimes
between axial and cylindrical symmetry.

" As'the title of the book implies, we shall be concerned with rotating
systems. It is therefore pertinent to consider a simple rotating system in
Newtonian theory, namely, the case of uniformly (rigidly) rotating inviscid
homogeneous fluid, where the rotation is steady, that is. independent of
time. As is well known, the boundary of such a fluid mass is an oblate
_spheroid, which is an ellipsoid with two equal axes, these equal axes being
_greater than the third axis, A prolate spheroid is one in which the equal axes
‘are smaller than the third axis. A typical portion of the material of the fluid
mass is kept in equilibrium by gravrtdtlonal pressure and cemnfugal forces.
We need not concern ourselves with the equations governing these forces
(see, for example, Chandrasekhar, 1969). If we assume the centre of the
spheroid to be at the centre of the coordinate system, the gravrtatrondl
potentral inside the matter is given by -

®(p.z) =ap® + hz2 + @, T (112

where a, b, ®, are constants, and @ is given by a morg comphcated but
explicitl - known’ functron of pand z outside the matter. From (l l) we see
rthat a, b and € (whxeh is- constam in- thrs ease) ‘dre rélated by

915 =0, o, I SIS TSy Sl (m;

‘ where b, = Od}/ﬁp, etc, The mte‘rlor and exterror potennals Jom sn@gothh &[N
‘ the boundary of the matter dlstrlbutlon “where the pressure is zero. B -
jSinirig Smoothly we meah that the pot’érﬁial drid its pamal derrvanves w:t"h
“réisedt to p and z are contihuous at the boufidary. > "

We will now describe one of the fundamental differences between a
“Newtonidn' rotatifig systefn anda g’eneral rélativistic orie: Let'a test particle
“gf ass: m ‘be'teleased froni rest at a great distanée’ “from ‘the rot‘ﬁing mass
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-onsidered above v the equatorial plane z =0 (Fig. 1.2). According to (L3)
the force on the test particle is given by

: 3 3} 0 o
v dml 19l 190 L p ke @ 1.14
F=mV® {m(n ap+| 0 0¢+ az) }250 (1.14)

Since the system s axiaily symmetric zbout the z-axis, @ is independent of ¢
su that the coefficient of i’ in (1.14) vanishes. This is true for all zand not just
‘or z = 0. Thus for anv position of the test particie there 15 no transverse force
on the particle in the i direction. Returning to (i.14), the system has
reflection symmetry about the plane z = 0,50 ® depends onz through 22 only
{recall that(1.12)isjust theinterior potential; the cxterior potentialisgiven by
a different function), so that

o) o -
120 st = 1.1
=t o -
Thus
o0 |
= m——(p, O)i®
F map (p, 0%, (1.16)

so that the force on the test particle is radial and it will follow the dashed
straight line through the centre of the mass (Fig. 1.2). Similar considerations
also apply for any rotating body which has axial symmetry and reflection
symmetry on the plane z=0, but we consider the above example for
definitgness. Considering now the corresponding situation in general
relativify, thetis, the-case of a steadily and rigidly rotating homogeneous

Fig. 1.2. Pathof a test particle released from rest in the equatorial plane ofa

rotating mass in Newtonian gravitation'(dashed line) and in general relativity
(continuous line). . -

— e it ——— ——

e ‘;_.‘T"‘pl‘:“:'f}ff

B4 I



6 Introduction

inviscid fluid, the first thing to note is that the surface of the mass is no
longer a spheroid. In fact due to the non-Euclidean nature of the geometry
itis difficult to characterize the surface in coordinates, but it is still true that
the pressure vanishes on this surface. The concept of the equatorial plane
and the fact that the system has reflection symmetry about this plane can be
taken over to general relativity and one can ask what will happen to a test
particle if it is released from rest on the equatorial plane. In this case there
will be a transverse force on the test particle because of the rotation of the
central mass and the particle will follow the continuous line (Fig. 1.2). This
phenomenon is related to what is referred to as ‘inertial dragging’ and wili
be discussed later. Thus in general relativity matter in motion exerts a force
akin to magnetic forces exerted by electric charges in motion. This is not
true in Newtonian gravitation.

1.2. Summary of general relativity

The reader is assumed to be familiar with the elements of general relativity
but we shall give here a brief review as a reminder of the main results
and to collect together formulae some of which will be useful later in the
book. A )
General relativity is formulated in a four-dimensional Riemannian space
in which points are lubelled by a general non-inertial coordinate system
(x% x1, x2 x3), often written as x* (u=0,1,2,3) (we use the covention that
Greek indices take values 0, 1, 2, 3 and repeated Greek indices are to be
summed over these values unless otherwise stated; the meaning of other
indices will be specified as they arise). Several coordinate patches may be
necessary to cover the whole of space-time. The space has three spatial and
 one time-like dimension. Under a coordinate transformation from x*to x'*
(in which each x"* is in general a function of x% x', x2, x3) a contravariant
vector field 4 and a covariant vector field B, transform as follows: -

ax* ox*
n =___A¥ ’ -
A* =22 A", B, 3o B (1.17)

and a mixed tensdr such as A*,; transforms ;s

0x? Ox'V gx'* " T
etc. All the information about the gravitational field is contained in the
second rank covariant tensor g, (the number of indices gives the rank of the

tensor) called the metric tensor, or simply the metric, which determines the
square of the space-time interval ds? between ipfinitesimally separated

[ -
A vai =

(1.18)
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events or points x* and x* + dx* ‘as, follows (g, = ¢.,.):
' ds? =g, dx*dx". _ (1.19)
The contravariant tensor corresponding to g,, is denoted by ¢** and is.
defined by
909" =9} (1.20)
where 6‘ is the Kronecker delta, which equals unity if » = y (no summation)

and zero otherwise. Indices can be rcused or lowered b» using the metric
tensor as follows:

At =g"A,, A4,=g,A7" (1.21)
The generalization of ordinary (partial) differentiatior: to Riemannian

space is given by covariant differentiation denoted bv & semicolon and
defined for a contravariant and a covariant vector as ioliows:

A = ‘;A»+r (1.22)
0
A, =2 24 (1.22b)
* oxY

Here the I'%; are called Christoffel symbols; they have the property
v =T%, and are given in terms of the metric tensor as follows:

: rul = 'Zlg (gav A + Yaiv gvi..a)’ (123)

where a comma denotes partial differentiation with respect to the
corresponding variable: g,, ; = dg,,/0x*. For covariant differentiation of
tensors of higher rank, there is a term corresponding to each contravariant

" index analogous to the second terms in (1.22a) and a term corresponding to
each covariant index analogous to the second term in (1.22b) (with a
negative sign). Equation (1.23) has the consequence that the covanant
derivative of the metric tensor vanishes:

9a=0, ¢, =0. (1.24)

Under a coordinate transl‘ormauon from x* to x"‘ the I'%, transform as
follows:

- ox™ 6x ox" 3xT Ix™

: Y7 oxP axVaxt " ox"ox't ox°

so that the I'%; do not form components of a tensor since the transformation

law (1.25) is different to that of a tensor (see {1.18)).
For any covariant vector 4, it can be shown that

A=Ay, = AR, (1.26)

(1.25)
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where R”,,, is the Riemann tensor defined by

R =iy~ fa + Tl — Tl (1.27)
The Riemann tensor has the {ollowing symmetry properties:
R"[n'." = R_,wwl = - ungv. {]2?0)
Ra;xvi. = Rv}.qw ) (128b)
Rtmv}. + R.,A,L‘J + Rawlu = Oa (128(,')
and satisfics the Bianchi identity:
R® HvAip + Raypu;ﬂ + Ra‘dp;v =0. “ 29)
The Ricci tensor R, is defined by -
Ruv = gA”RAutrv = Rduo'v- (] 30)
From {1.27) and (1.30) it follows that R,, is given by
R,=Vi . ~Th,+TAlg, -To,T4 (1.31)

Let the datenminani of g,, -cnsidered as a matrix be denoted by g. Then
«nother =xpression for R,, is given as follows:

1

Izu\' = ; _' /2 [ruvi - 9)1/2]')‘ - [IOg(— g)l/z].uv - err‘éc'
' (1.31a)

This follows from the fact that from (1.23) and the properties of matrices one
can show.that :

,a =[log(—g)''*] ,. (1.32)

From(1.31a)it follows that R,,=R,,. There is no agreéd convention for the
sign of the Riemann and Ricci tensors — some authors define thesp with
apposite sign to (1.27) and (1.31). The Ricci scalar R is defined by ..
R=¢g"R,. -~ -~ = - . (133)
By contracting the Bianchi identity on the pair of indices uv and op (that is,
multiplying it by g"* and fg:""o.zomcan deduce the identity. ., .- ¢
(R* —1g"™R), = 0. (1.34)
,The tensor G* = (R* —1g*R) i is sometimes called the Einstein tensor.
‘We are now in a position to write'down' the.fundamental equations of
general relativity. These are Einstein’s equations, given by e e
» R, —4g.R=8aTs . ¢ (1.35)
where T,, is the energy-momEntum tensor of the source ‘producing the
‘gravitational field. In (1.35) and throughout the following we use units such
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that Newton’s gravitational constant and the velocity of light are both
equal to unity. For a perfect fluid T, takes the following form:

= (¢ + pyu” — pg*”. (1.36)

where ¢ is the. mass-energy density (note the contrast to (1.1) where ¢ is just
the mass density), p is the pressure and u* is the four-velocity of matter given
by '

et ‘ '
u i (1.37)

where x*(s) describes the world-line of the matter in tcrms of the proper
time s along the world-line. The cnergy-momentum tensor for the
electromagnetic field will be considered in a later chapter. From (1.34) we
sec that Einstein’s equations {1.35) are compatible with ‘the following
equation

T, =0, (1.38)

which is the equation for the conservation of mass-energy and momentum.
" The equations of motion of a particle in a gravitational field are given by
the geodesic equations:
d?x* dx® dx*

———= 1.39
ds? +r“d ds 0 (1.39)

Geodesics can also be introduced through the concept of parallel transfer.
We will consider this concept and related matters in the next section.

This completes our bnef survey of some of the elements of general
‘relativity that we shall assume knowledge of in the following. In the rest of
this chapter we shall cover some additicnal topics which are pertinent to the
following chapters.

jeenie

1.3 Curves in Rlemanman space
A cnrve'i'n Rlenmnmau spacbis defined by-poimts x#(1) where x* are sunably
differentiable fanctions:of the real parameter:4;varying over some interval
of the real line. Consider a coordinate transformation frotn x* g x: The set
of qnamitms dx“yﬁ}. transformfto dx’“/d.ligwen by S

Bk LURRIETE L e, T e . PR Tt et
‘ e L dt“ [/X," dx i . R PR o 5 S TSR
' @ 144:40)

that is, dx#/d4 are components of a contravarlant vector Thls is called the
tangent vector to the curve. The curve, or a portion of it, is time-like, light-
like or space-like according as to whether g, dx*/dAdx*/dA > 0, = 0,0r <0.
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(At any point g,, can be reduced to the diagonal form (1, — 1, — 1, — ) bya
suitable transformation.) The length of the time-like or space-like curve
from A=4, to A= 4, is given by:

dx*dx®

Az
sz? Jh( guvaa

The length of a light-like curve is zero. For an arbitrary vector field Y* its
covariant derivative along the curve is the vector (defined along the curve)
Y* (dx"/dA). A similar definition can be given for the covariant derivative of
an arbitrary tensor field along the curve. The vector field Y* is said to be
parallelly transported along the curve if

/2 »
) di. (1.41)

dx* dx” dx*
w " _yH u yo.:
Yo=Yty
n v
=dd); e Y"c:: =0. (1.42)

A similar definition holds for tensors. Given any curve x*(4) with end points
A=A, and A = 4, the theory of solutions of ordinary differential equations
shows that if the I'%, are suitably differentiable functions cf the x* one
obtains a unique tensor at A = 4, by parallelly transferring any given tensor
from A = 4, along x*(4), if the latter are differentiable in A. A particular casc
is the covariant derivative of the tangent vector itself along x*(4). The curve
is said to be a geodesic curve if the tangent vector is transported parallelly
along the curve, that is (putting Y* = dx*/d4 in (1.42)) if
dix* dx' dx°®

5+ Dograr =0 (1.43)

A geodesic, or a portion of it, can be time-like, light-like or space-like
according to the type of curve it is.

Two vector fields V*, W* are _liprmal or orthogonal to each- other if
g V*W*=0.1If V* is time-like and orthogonal to W* then the latter is
necessarily space-like. A space-like three-surface is a surface defined by
S0 x', x%,x3) =0 such that g*'f,f,>0 when f=0. The unit normal
vector to this surface is given by n* =(g*f,f )" ' g*'f ,.

Given a vector fieid ¥, qne can define a set of curves filling all space such
that the tangent vector to any curve of this set at any point coincides with
the value of the vector field at that point. This is done by solvmg the set of
first order differential equations.

dx*

——-f"(x(l)), - (1.44)
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where on the right hand side we have put x for all four components of the
coordinates. This set of curves is referred to as the congruence of curves
generated by the given vector field. In general there is a unique member of
- this congruence passing through any given point. A particular member of
the congruence is sometimes referred to as an orbit. Consider now the
vector field given by (£°, 21, &%, 2%) = (1,0.0,0). From (1.44) we see that the
congruence of this vector field is the set of curves given by

(x® = 4, x! = constant, x? = constant, x* = constant). (1.45)

This vector field is also referred to as the vector field ¢/¢x°. One similarly
defines the vector fields ¢/dx!, ¢/¢x?, ¢/¢x?. That is. corresponding to the
coordinate system x* we have the four contravariant vector fields ¢/¢x*. A
general vector field X* can be written without components in terms of ¢/¢x"
as follows:

-

X=4X" (f\";, (1.46)
This is related to the fact that contravariant vectors ut any point can be
regarded as operators aciing on differentiuble functions f(x” x',x7 x%);
when the vector acts on the function. the result s the derivative of the
function in the direction of the vector field. as follows:

el
X=X

(1.47)

As is well known, differential gcometry und. correspondingly, general
relativity can be developed independently of coordinates and components.
We shall not be concerned with this approach except incidentally.
Whenever we use this approach we shall speafy the relevant points as we
have done in (1.47).

1.4. Killing vectors

Einstein's exterior equations R,, = (obtained rom (1.35) by setting
T,, = 0)are a set of coupled non-linear partial differential equations for the
ten unknown functions y,,,. The interior equations {1.35) may involve other
unknown functions such as the mass-energy density and the pressure.
Because of the freedom to carry out general coordinate transformations one
can in general impose four conditions on the ten functions g, .. Later we will
show explicitly how this is done in a case involving symmetries. In most
situations of physical interest one has space--time symrnetries which reduce
further the number of unknown functions. To determine the simplest form



