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PREFACE

The 5th Biennial Conference on “Waves and Stabilily in Continuous
Media” was held in Sorrento (Italy) from October 9 to 14, 1989. Same as
the previous four conferences this was a gathering of researchers who are in-
terested in discussing and presenting current problems on Waves and Stability
in Continuous Media. The scientific program included about twenty invited
speakers and short contributed papers.

The warm atmosphere created during the Conference has produced a deep
interchange of ideas and new common projects in this area.

The success of the Conference was due to the generous financial support
of several agencies that are listed in p. viii.

I wish to thank the members of both the Scientific and Organizing Com-
mittee as well as the members of the Organizing Secretariat for their help.

Last, but not least, I must acknowledge the participation of so many regis-
trants from different countries. Their collaboration was essential for the success
of the Conference.

Salvatore Rionero
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ON STABILITY AND LONG TERM BEHAVIOUR FOR RAREFIED GASES
LEIF ARKERYD 3

Department of Mathematics
Chalmers University of Technology
and the University of Gdteborg

S-41296 Goteborg Sweden

ABSTRACT
The talk discusses the stability and long term behaviour of
rarefied gases modeled by the Boltzmann equation. A review

of results for initial values far from equilibrium is given. -

A Formal Discussion

Let us consider a rarefied gasAdescribed througﬁ its one particle deﬁ—
sity F in phase space. Back in 1872 Boltzmann gave the evolution of such
a gas through an equation which expresses the mater1a1 derivative of F
in terms of the gain from molecules colliding into a region by binary
collisions minus the loss from those colliding out of the region. In the
absence of ;xterior forces his equation is

3tF 3 viF = gain - loss = QF,

Here Vx is the gradient with respect to the space variable x, v is velo-
city and t is time. Finally Q is the so called collision operator,

QF (x,v, )= f(F(x v )F(x,vz) - F(x,v )F(x v ))k(v1,v ,u)dv du.
R xB



Given two molecules of initial velocities (v1,v2) and initially
separated in space, (v;,vé) denotes the velocities after collision. The
details of the collision process are described with the help of the pa-
rameter set B, which is often chosen as angular coordinates for a sphere.
Finally k is a weight function depending on the interaction between the
molecules.

On physical grounds, the gas left to itself should settle down to-
wards some equilibrium, and that in a stable way, i.e. gases with a simi-
lar initial preparation should approach similar equilibria in a similar
way. And of course, this ought to be mirrored bylthe solution F of the
Boltzmann equation model. Surprisingly , after the equation has been
around for almost 120 years, the mathematical understanding of these
questions is still far from complete. For the great variety of more com-
plicated phenomena such as shocks, bifurcations and waves, which in many
cases are fairly well understood on the gas dynamic level, any more fun-
damental kinetic studies have hardly even started, and for a reasonable
picture above the perturbation level, we can only put our hopes to the
future.

Before turning to the mathematical results on equilibrium and sta-
bility, let us see what the Boltzmann equation seems to tell us formally
about the long time behaviour. Consider the entropy

HE(t) = J F(t)logF(t)dxdv. ;
We have

(3t £ vi)(FlogF) = (Bt + vi)F * logF(Bt * vi)F = QF + logF-QF,

and (by a change of variables argument)

J QFdxdv = 0.



Hence, under suitable boundary conditions

(D) atf FlogF dxdv = f(Bt + vi)Flongxdv = [QFdxdv + JlogF-QFdxdv

= [logF.QFdxdv = (change of variables)

- 2’; J(¥}E} = F,F,)(logF,F, = 1ogFiF})k dxdv < O,
And so the entropy is decreasing. By a similar change of variables,
mass, v-moments, and energy can be seen to be conserved.vFinally a lemma
by Gibbs tells us that the entropy is bounded from below by its wvalue
for a certain maxwellian Eo = a exp(—blv!2 + (c-v)) depending on the ini-
tial value.

Integrating (1) with respect to time we formally get

) EologEodxdv < J F(t)logF(t)dxdv = fFologFodxdv -
&
_l P v
77 é f(F1F2 F1F2)(10gF1F2 10gF1F2)k dxdvds,

and so

F;Fé = F1F2 O W - ol
As mentioned above we also expect F to converge to some equilibrium w,
which should then satisfy w;wé - W, = 0. This gives for f=logw that

f(v;) # f(vé) = f(v1) o f(vz).
Essentially by arguments going back to Cauchy, it follows that

f=a+ (vo°v) - B]vlz, w = exp(f) = a exp(~b|vl2 = (v°°v))
with coefficients possibly depending on other variables such as x and t.
Hence the equilibrium is a (possibly local) maxwellian.

In the case of the forces between the molecules being inversely

proportional to the fifth power of the distance, the v-moments formally

satisfy a system of ordinary differential equations which can easily be

analysed having exponential convergence to equilibrium and stability.
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Strict Results

The formalAarguments indicate the presence of convergence to equ-
ilibrium, even exponential convergence, and stability. When we next
turn to the strict mathematical results and starting far from equilib-
rium, we will see that the strength of the known results steadily de-
creases, when progressing from a) the spacehomogeneous case via b) the
spacedependent case close to spacehomogeneous to c¢) the spacedependent
case in general.

In the spacehomogeneous case a) the understanding is good for

hard forces, i.e. those of inverse power >5 under suitable cutoffs in
the u-variable, which means playing down the grazing collisions. Let

k(v1,v2,u) = h(u)[v1—v2|B » 0<B<1, with h bounded,

1

T = {measurable functions f with (1+|v|r)fE:L1(R3)L

1 i B
LrY ={f.R+ > Lr with zgg exp(yt) Hf(t)||r < o},

Given a maxwellian Eo the following result holds.
Theoren') There exists r >2+48, and u>0, such that if r,>r and

1 2 2 1
EoeLr1, J(1,v,v )E dv = J(1,v,v)E dv, F logP €L,
Zhen

IE - E

< « o r<
AR A g ¥

1 0 <y<y.

Moreovern, 4if 2<r<r =8, Zhen given €>0, and a bounded set Bd‘:: .
1
there is a 8>0 such that (stability)

sup| |B-¥| | <e b |IE- ¥ 1| _ < 6 and E e B.
£>0 :

The proof uses the spectral properties of the linearized colli-
sion operator and a powerful apriori estimate for Q. It is fairly

i . 3 5 e 1
technical and the interested reader is referred to the article ).



