


8962854

Parallel
Program Design

A Foundation

K. Mani Chandy |{{ {§HININ

E8962854

Jayadev Misra

University of Texas at Austin

A
\ A4
ADDISON-WESLEY PUBLISHING COMPANY
Reading, Massachusetts « Menlo Park, California « New York

Don Mills, Ontario « Wokingham, England ¢ Amsterdam
Bonn ¢ Sydney ¢ Singapore ¢ Tokyo ¢ Madrid ¢ San Juan



Library of Congress Cataloging-in-Publication Data

Chandy, K. Mani.

Parallel program design : a foundation / by K. Mani Chandy and

Jayadev Misra.
P- cm.

ISBN 0-201-05866-9

1. Parallel programming (Computer science) I. Misra, Jayadev.
II. Title.
QA76.6.C42818 1988 87-26124
004’ .35--dc19 CIP

Reprinted with corrections August, 1988
Copyright © 1988 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a

retrieval system, or transmitted, in any form or by means, electronic, mechanical,
photocopying, recording or otherwise, without the prior written permission of the

publisher. Printed in the United States of America. Published simutaneously in
Canada.

BCDEFGHIJ-HA-898



To our families

Jean Mamata
Christa Amitav
Mani Anuj
Chandy Sashibhusan

Rebecca Shanty



“The most general definition of beauty. ..
Multeity in Unity.”

Samuel Taylor Coleridge
On the Principles of Genial Criticism (1814)



Foreword




vi Foreword

A complete theory of programming includes

1. A method for specification of programs which permits individual require-
ments to be clearly stated and combined.

2. A method of reasoning about specifications, which aids in elucidation and
evaluation of alternative designs.

3. A method of developing programs together with a proof that they meet
their specification.

4. A method of transforming programs to achieve high efficiency on the
machines available for their execution.

It is not often that we can welcome the advent of a new theory of
programming. Twelve years ago, E.W. Dijkstra published his Discipline of
Programmang, which is still a definitive source-book on the development
of sequential algorithms. And now Chandy and Misra have shown how
Dijkstra’s methods, and other more recent developments, can be generalized
to distributed and concurrent algorithms. Their work deserves the warmest
welcome.

This book treats all essential aspects of the theory of programming. The
underlying logic is developed with elegance and rigour. It is illustrated by
clear exposition of many simple examples. It is then applied, with matching
elegance and simplicity, to a range of examples which have hitherto justified a
reputation of baffling complexity. The authors’ technique and style are worthy
of imitation by all who publish descriptions of distributed algorithms.

The book will be studied with enjoyment and profit by many classes of
computing scientists. Teachers will welcome it as a text for an advanced class
on programming. Software engineers will use it as a handbook of methods and
algorithms for the design of distributed systems. And theoreticians will find a
rich source of research ideas that promise to be of relevance in the professional
activity of programming.

C. A. R. Hoare



PREFACE

Our Prejudices
about Programs,
Architectures, and
Applications




viii Preface

Goal

The thesis of this book is that the unity of the programming task transcends
differences between the architectures on which programs can be executed and
the application domains from which problems are drawn. Our goal is to show
how programs can be developed systematically for a variety of architectures
and applications. The foundation, on which program development is based, is
a simple theory: a model of computation and an associated proof system.

Architectures

The architectures considered cover a wide spectrum, including sequential
machines, synchronous and asynchronous shared-memory multiprocessor sys-
tems, and message-based distributed systems. We propose that there is a
continuum from the design of programs to the design of electronic circuits.
We also derive programs for fault-tolerant systems in the same way we derive
programs for fault-free systems.

Application Areas

We develop programs in a uniform manner for a variety of application areas.
Many of the problems considered here appeared initially as operating systems
problems, including termination detection of asynchronous programs, garbage
collection, and conflict resolution in parallel systems. However, programmers
who write so-called “application” programs for execution on parallel archi-
tectures are also concerned with these problems—for instance, detecting the
termination of a distributed application program is not always a trivial task.
We also develop programs for combinatorial problems (shortest path, sorting,
combinatorial search, etc.), matrix problems, and communication protocols.

Program Development

This book is based on a small theoretical foundation that is applied to all
problems. The theory, which uses elementary mathematics, is described in the
first few chapters. A continuum of solutions is developed for each problem,
starting with simple programs, i.e., programs with relatively simple proofs.
The specifications and proofs are refined to obtain efficient programs for
various classes of target architectures.

A small number of heuristics is suggested to refine specifications and
programs. Methods to compose larger programs from smaller ones are also
suggested. The theory and the heuristics are the unifying framework for the
book.



Preface ix

There are many ways to develop programs and even more ways to write
books about them. When we began working on this book we were faced with
several alternatives. The choices we made, and our reasons for doing so, are
described next. Each alternative had some merit. Ultimately our choices were
made on the basis of personal preference. By describing the alternatives and
our choices, we hope to give the reader an idea of what sort of book this
is—and equally important, what sort of book this is not.

Choices in a Study of Programming

Design versus Coding

A conventional view of programming is that given a specification, a program-
mer produces code and then proves that the code meets the specification. A
book based on this view emphasizes programming languages and proofs of
program texts. This book, by contrast, is about the design of programs. A
design consists of a series of small decisions, each dealing with a manageable
set of concerns. The larger part of program design is concerned with the
stepwise refinement of specifications; the production of code is postponed until
the final stages. Therefore the emphasis here is on a model of computation,
a notation for specifications, and a theory for proving the correctness of
specifications. Much of this book deals with the notation and proofs of
designs; programming languages and proofs of program texts are accorded
only secondary importance. The derivation of a program (in any programming
language) from the final specification should be the most mechanical and least
creative part of programming.

Taxonomy versus Foundation

There are several paradigms for the development of science. On the one hand,
theoretical physics attempts to find the fundamental laws that explain all
physical phenomena; the smaller the number of laws, the better. On the other
hand, much of experimental botany is concerned with observing, classifying,
and describing what exists. In writing this book we were faced with the choice
either of attempting to propose a foundation for parallel programming and
then applying it to a variety of problems, or of observing, classifying, and de-
scribing programs and architectures. Certainly, there is a great deal of interest
in program and machine taxonomy. There are categories of machines (sequen-
tial machines, single-instruction-multiple-data machines, multiple-instruction-
multiple-data machines, etc.), categories of systems (message-based, shared-
variable-based, synchronous, asynchronous, etc.), categories of programming
styles (functional, logic, imperative, object-oriented, etc.) and categories of



X Preface

applications (operating systems, communication protocols, expert systems,
etc.). The advantage of the observation-classification-description paradigm is
that it gives the reader a comprehensive description of what exists; very little
is left out. Furthermore, it suggests a solution strategy: Given a problem,
one looks for the categories that the problem falls into and uses solutions that
have proved successful. Finally, a careful taxonomy is guaranteed to be useful.
Nevertheless, we have chosen the riskier option of proposing a small foundation
and basing our book on it. Our reason is subjective. Today programming
appears to be fragmented into increasingly esoteric subdisciplines, each with
its priests, acolytes, and incantations. We believe that there is a unity
underlying all programming; we hope to contribute to its appreciation.

Choice of Foundation

There seems to be some consensus in physics as to which laws are funda-
mental: The fundamental laws are those from which all others are derived.
In programming, the choice of a foundation—the computational model and
proof system—is less clear-cut. The Turing Machine is not our model of choice,
though it is a basic model, because it is inappropriate for our purposes—the
development of programs. We have a strong personal preference, however, for
making do with less (when it comes to computational models). Therefore we
have attempted to design a computational model and associated theory with
the smallest number of concepts adequate for our purposes.

There are alternatives to our approach of applying a small theory to a wide
range of problems. A notation (and an associated theory) rich in expressive
power can be used, or many theories can be proposed—an appropriate one
for each problem area. Employing rich notations and several theories has
advantages, the most obvious of which is that a skillful choice of theory in
solving a problem may result in an elegant solution. Our choice of a small
theory is based on our desire to explore the unity of all program development.
We are willing to pay the price of less elegant solutions for the advantage of
a unified framework.

Formal versus Informal Descriptions of Programs

Programs, especially parallel programs, are often described informally. Prob-
lems, such as that of the dining philosophers, are posed and solved without
using a formal notation. There are advantages to informal descriptions. A
problem can be studied without the baggage of a formal notation and proof
system. Also, word pictures such as philosophers sitting around a table sending
forks to one another are vivid and helpful. We have attempted to take
advantage of the benefits that informal reasoning has to offer, but we have
chosen to employ a formal notation.



Preface xi

In our choice of programming notation, we limited ourselves to one that
we could handle mathematically. We limited our expressive power in this
way because we are fallible as programmers, and we hope that the use
of mathematics will make us less so. We have been amazed at the errors
we have made in informal arguments. Programs that seemed so obviously
correct at one time are, in retrospect, so obviously wrong. It is humility
as programmers that drives us to seek formalism and mathematics. We are
fallible as mathematicians as well, of course, but the discipline helps.

Our desire for a simple unifying framework has led to a restricted notation.
Restricting concepts to a small, mathematically manageable set has resulted
in our not exploring some interesting avenues of research. For instance, we are
afraid of self-modifying rule-based systems—in which new rules are added as
computation proceeds—because we do not know how to construct proofs for
such systems.

Operational versus Nonoperational Reasoning
about Programs

One can reason about the unfolding computations of a program (this is called
operational reasoning) or one can focus, as much as possible, on static aspects
(such as invariants) of the program. We favor the static view here for three
reasons. First, we made more mistakes when we used operational reasoning—
for example, a common mistake is forgetting to consider certain sequences of
events that could occur. Second, we have found it hard to convince skeptics
about the correctness of our programs by using operational arguments. (We
speak from our experience in teaching distributed systems to many students
who are, quite properly, skeptics. Inevitably, a student asks, “But, you don’t
seem to have considered the case where B follows C which follows D which. ..?”
Operational arguments have reduced us to saying, after fielding several such
questions, “Check it out for yourself and you’ll see that it is okay.”) Third,
our operational arguments tend to be longer.

Operational reasoning has value. Again, being very subjective, we have
found that the flash of insight that sparks the creation of an algorithm is often
based on operational, and even anthropomorphic, reasoning. Operational
reasoning by itself, however, has gotten us into trouble often enough that
we are afraid of relying on it exclusively. Therefore we reason formally about
properties of a program, using predicates about all states that may occur
during execution of the program.

The Medium versus the Message

The message of this book is that a small theory—a computation model and
its associated proof system—is adequate for program design in a variety of



xii Preface

application areas and for a variety of architectures. The medium in which this
message is couched is a (small amount of) notation to express the programs
and their properties. We found that we could not express our ideas without
introducing some notation. However, this book is not about a programming
language. We have paid no attention to several important aspects of program-
ming languages (such as data structures) and little attention to others (such
as abstraction mechanisms). We wish to emphasize the message; that is, the
theory. We have attempted to write a book that is useful to programmers
no matter what programming language they employ. It is our hope that
programmers will benefit from our theory for developing programs written
in languages of their choice.

Choice of Material

The grandeur of our vision is constrained by the limitation of our ability (and
also by the practical necessity of having to finish this book). We have not done
everything we wanted to do. In our choice of architectures and applications we
have attempted to demonstrate the unity of the programming task. However,
we have not given some architectures the space they deserve, and we have
omitted some application areas altogether—a situation we hope to remedy in
future editions. For instance, designs of electronic circuits and fault-tolerant
systems do not receive the attention they deserve. A significant omission is
real-time systems. Other significant omissions include the study of complexity
models such as NC and different modal logics appropriate for reasoning about
parallel programs.

The Bibliography at the end of the book is far from exhaustive. Many
of the references are books and survey papers that point to large lists of
references and the original sources.

Reading this Book

Who Should Read It?

This book is for those interested in program design and computer architecture.
The ideas have been used, and are being used, to teach an introductory (i.e.,
first-semester) graduate course, and a more advanced, second-semester course
in computer science. However, the reader should be warned that the view of
program design taken here is somewhat idiosyncratic; the contents do not ex-
actly match the subject matter of a standard course in a standard curriculum.
We hope that this preface gives readers some idea of our prejudices, which
should help them decide whether to continue reading.



Preface xiii

Few prerequisites are needed to read the book. It is based on a small
theory that is described in Chapters 3 and 7. The theory employs elementary
mathematics including the predicate calculus.

The sources of the example problems are not described in detail. For
instance, in describing garbage collection, the origins of the problem in mem-
ory management are described with more brevity than in most programming
textbooks. Problems are specified formally, so there is little likelihood that the
reader will misunderstand them; however, the reader who is not aware of the
problems may not appreciate their practical significance. Thus readers should
have some maturity in programming or should believe the authors that the
problems studied here are genuine.

How to Read It

Read this preface! Here we confess our prejudices, and readers whose preju-
dices don’t match ours are best forewarned.

Most of the sections in this book contain both informal and formal parts.
The informal part is an English description with little formal notation. The
formal part contains the specifications, programs, and proofs employing the
notation presented in Chapters 2, 3, and 7. A reader can learn the main
ideas of a chapter by reading all the informal parts and skipping the formal
ones. A reader who wishes to obtain all the ideas in a chapter should read it
in sequence: The informal part describes what is coming in the next formal
part. There are a couple of other ways of reading this book that have proved
helpful, depending on the reader’s facility with formalisms. One is to read all
the informal parts before reading the entire chapter in sequence. The other
is to read the informal part and then carry out the derivation in the formal
parts oneself, treating each formal section as a worked-out exercise; this is the
best way to read the book because it requires the active participation of the
reader.

We recommend that the first five chapters be read sequentially; these
chapters present the theory and apply it to one example in detail. Chapter 6—
“Toy Examples” —illustrates the theory; the reader can pick and choose among
these examples. Chapter 7 presents a theory for constructing large programs
by composing small ones. Chapter 8 considers a special case of this theory,
for the construction of process networks. Chapters 9 through 16 describe
operating systems problems; the later chapters in this sequence are based on
earlier ones. Chapters 17 and 18 deal with fault-tolerant systems. The next two
chapters deal with combinatorial problems—sorting and combinatorial-search
strategies. Chapter 21 deals with algorithms for systolic arrays. In Chapter 22,
different programming styles—sequential, functional, logical—are contrasted
with the style adopted in this book; the chapter also includes the rationale
for some of the design decisions of our theory. In the epilog, we give some



xiv Preface

random thoughts on programming. The initial four chapters and Chapter 7
are necessary for understanding the later ones; the remaining chapters are
largely independent and may be read in any order.

A first-level graduate course can be designed around the first five chapters
plus one chapter each on combinatorics, operating systems, fault tolerance,
and systolic arrays.

Acknowledgments

Our ideas about programming have been deeply influenced by arguments
and discussions over a period of years with Edsger W. Dijkstra. Detailed
and generous criticism by C. A. R. Hoare helped us understand some of
the implications of our work; we are especially indebted to him for his
insistence on the importance of designing as opposed to coding, and of
proofs of specifications as opposed to proofs of programs. We are thankful
to our graduate students, in many sections of CS380D and CS390D at The
University of Texas at Austin and in CS131 at Caltech, and the members of
the reading course 6.893 at MIT, who have suggested valuable technical and
editorial improvements; special thanks go to Alan Fekete, Edgar Knapp, and
Mark Staskauskas. Interactions with various individuals in the Concurrent
Programming Institute (held under the auspices of The University of Texas
Year of Programming, March 2-6, 1987, Austin, Texas) clarified several cloudy
issues. We are grateful to the following individuals and groups, who have
commented on our work and the earlier drafts of this book: K. R. Apt,
the Austin Tuesday Afternoon Club, Manfred Broy, The Eindhoven Tuesday
Afternoon Club, Allen Emerson, He Ji Feng, Ira Forman, A. J. M. van
Gasteren, M. Gouda, David Gries, Rick Hehner, Ted Herman, Hank Korth,
Ben Kuipers, Simon Lam, Chris Lengauer, M. D. Mcllroy, Al Mok, Ben
Moszkowski, Avi Silberschatz, and Chuck Seitz. We are especially indebted
to Nissim Francez, Leslie Lamport, Amir Pnueli, and Jan L. A. van de
Snepscheut, for their constructive criticisms. We are grateful to the following
reviewers for their detailed comments: Bruce Arden, University of Rochester;
Stephen Garland, MIT Laboratory for Computer Science; Maurice Herlihy,
Carnegie-Mellon University; Nancy Lynch, Massachusetts Institute of Tech-
nology; Alain Martin, California Institute of Technology; Fred B. Schneider,
Cornell University; Ken Sevcik, University of Toronto; and William Weihl,
MIT Laboratory for Computer Science. Thanks also to Bob Comer for his
implementation of our notation on an IBM PC.

Over the years we have received generous research grants for this work
from the Air Force Office of Scientific Research and the Office of Naval
Research; we are thankful for their continuing confidence. IBM supported



Preface b'4%

the early work in this area and we are especially grateful to Fred May of the
Austin Division for his help.

Special thanks go to Nancy Lawler for her outstanding editorial and pro-
duction skills; this book would not have been possible without her assistance.
We are also thankful to Debra Davis, Julie Barrow, and Mary Ghaleb, who
typed various portions of the manuscript.

It is a particular pleasure to acknowledge the help of the editorial staff at
Addison-Wesley.

Austin, Tezas K. M. C.
J. M.



Contents

Foreword v

Preface: Our Prejudices about Programs, Architectures, and
Applications vii

1. Parallelism and Programming: A Perspective 1

1.1 The Unity of the Programming Task 2

1.2 A Search for a Foundation of Parallel Programming 4
Nondeterminism / Absence of Control Flow / Synchrony and Asyn-
chrony / States and Assignments / Extricating Proofs from Program
Texts / Separation of Concerns: Correctness and Complexity

1.3 Introduction to the Theory 8
UNITY Programs / Separating Concerns: Programs and Implementa-
tions / Mapping Programs to Architectures / Modeling Conventional
Programming Language Constructs and Architectures

1.4 An Example: Scheduling a Meeting 12
The Problem Statement / Operational, Process-Oriented Viewpoint /
The UNITY Viewpoint
Summary 18
Bibliographic Notes 19

2. A Programming Notation 21

2.1 Introduction 22
2.2 UNITY Program Structure 22

xvii



