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1. Introduction

In this set of lecture notes, we present a culmination of
results on infinite matrices which were evolved by the members of the
Katowice Branch of the Mathematics Institute of the Polish Academy of
Sciences. In the early history of functional analysis "sliding hump”

“smethods were used extensively to establish some of the early abstract
results in functional analysis. For example, the first proofs of
versions of the Uniform Boundedness Principle by Hahn and Banach and
Hildebrand utilized sliding hump methods ([18], [39], [42], [35]).
Since Banach and Steinhaus gave a proof of the Uniform Boundedness
Principle based on the Baire Category Thecorem, category methods have
proven to be very popular in treating various topics in functional
analysis [19]. In recent times, there has been a return to "sliding
hump” methods in treating various topics in functional analysis and
measure theory. For example, in [34] Diestel and Uhl use a lemma of
Rosenthal ([64]1) as an abstract sliding hump method to treat a
variety of topics in vector measure theory.

In a somewhat similar fashion, the Antosik-Mikusinski Diagonal
Theorem ([(S31, [2], [3], [9]) can be considered to be an abstract
sliding hump method and has been employed to treat a wide variety
of topics in functional analysis and measure theory ([4], (5], (6],
[91, [121, (531, [54], [S6], [S7]1). The Antosik-Mikusinski Diagonal
Theorem is a result concerning infinite matrices and has proven to be
quite effective in treating various topics that were previously
treated by Baire category methods (see in particular the texts [12],
[S6]1). These notes present a result concerning infinite matrices
which is of an even simpler and more elementary character than the
Diagonal Theorem, and which can still be used to treat a wide variety

of topics in functional analysis and measure theory ([16]).



In section 2, we present the two basic matrix results evolved by
P. Antosik in references [6] - [11], and then in subsequent sections
we present various applications of the matrix results to topics in
functional analysis and measure theory. After the basic material has
been presented in sections 2 and 3, there has been an attempt to make
the subsequent chapters on applications independent of one another.
Thus, there is some repetition in some of the chapters; for example,

“summability is mentioned in both sections 5 and 8 and other topics
are repeated.

In section 3, we introduce and study the notions of X conver-
gence and X boundedness which were also discovered and studied by
the Katowice mathematicians ([6] - [11]). An equivalent form of X
convergence was introduced by S. Mazur and W. Orlicz in [52] and also
studied by A. Alexiewicz in [1]. The idea was rediscovered in the
seminar of P. Antosik and J. Mikusinski. In subsequent sections the
notions of X convergence and X boundedness will be shown to be
effective substitutes for completeness and barrelledness assump-
tions in many of the classical results of functional analysis. For
example, in section 4, we treat the Uniforu Boundedness Principle.
The classical Uniform Boundedness Principle is well-known to be false
in the absence of completeness or barrelledness assumptions, but we
present a version of the Uniform Boundedness Principle in Theorem 4.2
which is valid in the absence of any completeness assumption and
which contains the classical Uniform Boundedness Theorem for F-spaces
as a special case. To illustrate the utility of our general Uniform
Boundedness Principle in the absence of completeness, we give a
derivation of the Nikodym Boundedness Theorem based on the general
Uniform Boundedness Principle.

In section S, we discuss a classical result on the convergence
of operators which is sometimes attributed to Banach and Steinhaus.

This result, like the Uniform Boundedness Principle, is known to be



false without completeness or barrelledness assumptions. Neverthe-
less, using the notion of X convergence, we present a version of
this theorem which is valid without any completeness assumptions. As
an application of the general result in the absence of completeness,
we use it to derive the Nikodym Convergence Theorem, the Brooks-
Jewett Theorem, and a result of Hahn, Schur and Toeplitz on
summability.

In section 6, we treat bilinear maps using our matrix methods.
We derive the classical result of Mazur and Orlicz on the joint
continuity of separately continuous bilinear maps and also, using the
notion of X convergence, present several hypocontinuity type of
results which are valid without completeness assumptions. Our
hypocontinuity results generalize results of Bourbaki.

In section 7, we treat various Orlicz-Pettis type results on
subseries convergent series by matrix methods. We derive the
classical Orlicz-Pettis Theorem as well as Orlicz-Pettis results for
compact operators and the topology of pointwise convergence on
certain well-known function spaces.

In section 8, we give generalizations of the classical lemmas of
Schur and Phillips to the group-valued case. We show that these gen-
eral results contain the classical lemmas of Schur and Phillips as
special cases. A result of Hahn and Schur on summability is also
obtained from the general results.

In section 9, we present a version of the Schur lemma for
bounded multiplier convergent series in a metric linear space. This
version for bounded multiplier convergent series is motivated by a
sharper conclusion of the classical Schur lemma for B-spaces which
is obtained in Corollary 8.4. Some general remarks on the vector
versions of the summability results of Schur and Hahn are also

included.



In section 10, we consider the problem of imbedding < and 2%
into a B-space. Using the basic matrix lemma of section 2, we
obtain the classical results of Bessaga-Pelczynski and Diestel-Faires
on imbedding o and 2° into B-spaces. We also indicate appli-
cations to a large number of well-known results in Banach space
theory. The results and method of proof are very analogous to those
of Diestel and Uhl ([34] I1.4) except that the basic matrix lemma is
—~employed instead of the Rosenthal lemma.

There are two themes which prevail throughout these notes. The
first is that the matrix results presented here, although being very
elementary in character, are extremely effective in treating various
topics in measure theory and functional analysis which have been
traditionally treated by Baire category methods. The other theme is
that the idea of X convergence can be used as an effective substi-
tute for completeness assumptions in many classical results in
functional analysis. For example, we present versions of the Uniform
Boundedness Principle, the Banach-Steinhaus Theorem and classical
hypocontinuity results which are valid with no completeness assump-
tions whatever being present. Applications of these general results
in the absence of completeness are indicated.

Many of the topics treated in these notes are standard topics in
functional analysis which are treated in a great number of the func-
tional analysis texts by various means including the popular Baire
category methods. The matrix methods employed in these notes are of
a very elementary character and can be presented without requiring a
great deal of mathematical background on the part of the reader. For
this reason these matrix methods would seem to be quite appropriate
for presentation of some of the classical functional analysis topics
to readers with modest mathematical backgrounds. It is the authors’
hope that the matrix methods presented here will find their way into

the future functional analysis texts.



W

We conclude this introduction by fixing the notation which will
be used in the sequel.

Throughout the remainder of these notes, unless explicitly
stated otherwise, E, F and G will denote normed groups. That is,
E 1is assumed to be an Abelian topological group whose topology is
generated by a quasi-norm || : E » R,. (|| is a quasi-norm if

|0]= 0, |-x| = |x|] and |x+y| € |x] + |y|l; a quasi-norm generates a

.metric topology on E via the translation invariant metric

dix,y) = |x-y|.)

Recall that the topology of any topological group is always gen-
erated by a family of quasi-norms ([27]). Thus, many of the results
are actually valid for arbitrary topological groups. We present the
results for normed groups only for the sake of simplicity of exposi-
tion.

Similarly, X, Y and Z will denote metric linear spaces whose
topologies are generated by a quasi-norm ||. (For convenience, all
vector spaces will be assumed to be real; most of the results are
valid for complex vector spaces with obvious modifications.) If it
is further assumed that X is a normed space, we write || || for
the norm on X.

The space of all continuous linear operators from X into Y
will be denoted by L(X,Y). If X and Y are normed spaces, the
operator norm of an element T € L(X,Y) is defined by
[ITI] = supt | |T=[] = |Ix]] € 1}.

If X and Y are two vector spaces in duality with one another
by the bilinear pairing <, >, the weakest topology on X such that
the linear maps Xx + <x, y> are continuous for all y €Y is
denoted by o(X,Y). o(X,Y) is referred to as the weak topology on
X induced by Y ([79] 8.2).

Other notations and terminology employed in the notes is

standard. Specifically, we follow [38] for the most part.



Finally, for later use, we record a lemma of Drewnowski ([36])
which will be used at several junctures in the text.
Let I be an algebra of subsets of aset S. If p: XL-+>G

is a finitely additive set function, then p is said to be strongly

additive (exhaustive or strongly bounded) if lim ”(Ei) = 0 for each
disjoint sequence {Ei) from X . We have the following result due

to Drewnowski.

Lemma 1. Let X be a o-algebra. If by 2 L G 1is a sequence of
strongly additive set functions and (Ej) is a disjoint sequence

from L , then there is a subsequence (Ek‘) of (Ej) such that
J

ki is countably additive on the o-algebra gernerated by {Ek.}'
J

Drewnowski states this result for a single strongly additive
measure in [36] (see also Diestel and Uhl [34] 1.6), but the lemma
above can be derived from Drewnowski ‘s result in the following way:
let GN be the space of all G-valued sequences. Equip GN with
the quasi-norm | | defined by

gl = £ lg;l/00 v g D2t
where g = (g;, g5, ...) and |gi| is the "norm” of g; in G .
Now define p : E»GN by u(E) = (u(E), uy(E), ...) . Then u is
strongly additive so by Drewnowski’s lemma, there is a subsequence

(Ek‘} of (Ej} such that p 1is countably additive on the o-algebra,
J

ZO , generated by (Ek_). Then each u; is clearly countably addi-
J

tive on the o-algebra ZO .



2. Dbasic Matrix Results

In this section we establish the two basic results on infinite
matrices which will be used throughout the sequel. The first result
is a very simple and elementary result on matrices of non-negative
real numbers. This result is then used to establish a convergence
type result for matrices with elements in a topological group. Both
results are of an elementary character and require only elementary

techniques in their proofs.

Lemma 1. Let xij 3 0 and eij >0 for i,j EN. If lim xij =0
for each j and lim xij = 0 for each i, then there is a subse-
J
quence (mi} of positive integers such ihat x < € for 1 # j.
1)

Proof: Put m = 1. There is an m, > my such that xmlm < €5

and xmml < €y for m 3> m,. Then there is an m; > m, such that

< €34 and x < €35 for m > m3.

mm2

xmlm € €13 xmzm < €23+ xmm1

An easy induction completes the proof.

Lemma 1 will be used directly in several later results but the
principle application of Lemma I will be to establish the basic

matrix convergence result below.

Basic Matrix Theorem 2. Let E be a normed group and X5 j € E for

i,j € N. Suppose

(I) lim Xij = %5 exists for each j and
1



(I1) for each subsequence ({m.} there is a subsequence (nj) of

J
{m.} such that { £ x._ } is Cauchy.
J . in.
J= J
Then lim Xij = %j uniformly with respect to j.
i

In particular, lim Xiq = 0.
i

Proof: If the conclusion fails, there is a 6 > 0 and a subsequence

’(ki) such that sup ka_j - le > 8. For notational convenience as-
j i

sume k; = i. Set i; =1 and pick j; such that Ix. . =-x. ] >86.

By (I) there is i, > i; such that |x | > & and

e T
1131 129

Ixij - le <8 for i>i, and 1€ j € j;. Now pick j, such that

X. . =%X. | >8 and note that j, > j,. Continuing by induction,
irip o 2 1
we obtain subsequences (ik} and (jk) such that

| | > 8. Set Zyp = X and note

X. . = X. 5 o w9, i
1xJk 1k+19k 1xdp 1k+19p

(1) | Zik | > 6.

Consider the matrix [|zk£|1 =Z. By (I), the columns of this

matrix converge to 0. By (II), the rows of the matrix [xijl con-
verge to O so the same holds for the matrix Z. Let Cij >0 be
such that I eij < w., By Lemma 1, there is a subsequence {mk) such

ij
that |kam2| < € for k # 2.

By (II) there is a subsequence lnk} of (mk) such that

(2) lim £ Z = 0.
p=1 "M

Then

(3) | z | € | |+ £ Z I

r Z < I € +
My Lk kM p=1 "kMp 2k "kMp



|z Zz |.

p=1 %"

Now the first term on the right hand side of (3) goes to 0 as k +» =
by the convergence of the series L €xp and the second term goes to O
by (2). But this contradicts (1) and establishes the first part of the

conclusion.

The uniform convergence of the limit, lim Xij = X;j and the fact
i

that lim X5 j =0 for each i implies that the double limit lim Xij
J 1)

exists and is equal to O. In particular, this implies

lim x.. = 0.
i ii

This matrix result will be the basic tool used throughout the
sequel. A matrix [xijl which satisfies conditions (I) and (II) of
Theorem 2 will be called a X matrix (the reason for the use of this
terminology will be indicated in the next section).

The Basic Matrix Theorem 2 has a very different character than the
Antosik-Mikusinski Diagonal Theorem in that the hypothesis and the con-
clusions have very different forms ([2], [53]1). However, Theorem 2 can
also be viewed as a diagonal theorem in the sense that the hypotheses
of Theorem 2 imply that the diagonal sequence (xii) converges to
zero. In fact, if one first shows only that the diagonal sequence
converges to zero, then it is not difficult to use this to show that in
fact the columns of the matrix are uniformly convergent.

Matrix results of a very similar nature to Theorem 2 have been
established in [6] - [11] and [73]. The matrix results of these papers
have been used to treat a wide variety of topics in both measure theory
and functional analysis. Much of the content of these papers will be
treated in chapters 4, 5, 8 and 9.

It should be pointed out that the functional analysis text of
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E. Pap ([56]1) uses the Antosik-Mikusinski Diagonal Theorem in a
systematic manner to treat a variety of classical topics in function-
al analysis and in this sense is very much in the spirit of these

notes except that we systematically employ the Basic Matrix Lemma.



3. X Convergence

In this section we introduce the notion of a X convergent se-
quence. This notion was introduced by P. Antosik in [6] and was
further explored in [7] - [11); further applications to the Uniform
Boundedness Principle and bilinear maps are given in [14] and [75].
The " X " in the description below is in honor of the members of the
Katowice Branch of the Mathematics Institute of the Polish Academy of
Sciences who have extensively studied and developed many of the
results pertaining to X convergent sequences.

As a historical note, it should be pointed out that S. Mazur and
W. Orlicz introduced a concept very closely related to that of a X
convergent sequence in [52], Axiom II, p. 169. They essentially
introduced the notion of a X (metric linear) space which is defined
below and noted that the classical Uniform Boundedness Principle
holds in such spaces. A. Alexiewicz also studied consequences of
this notion in convergence spaces ([1] axiom Aé , P. 203). It
should also be noted however that the notion of a X convergent
sequence and that of a X bounded set permits the formulation of
versions of the Uniform Boundedness Principle in arbitrary metric
linear spaces (Theorem 4.2 below) in contrast to the situation

encountered in the classical Uniform Boundedness Principle.

Definition 1. Let (E,7T) be a topological group. A sequence {xi}
in E is a T- X convergent sequence if each subsequence of (xi)

has a subsequence {xi } such that the series & X4 is T-conver-
k k 'k

gent to an element x € E.

If the topology T 1is understcod, we drop the T in the descrip-

tion of 71- X convergence.
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Note that any 7- X convergent sequence (xi) is T-convergent

to O by the Urysohn property, i.e., any subsequence of {xi) has a

subsequence which converges to 0. In complete spaces the converse
holds.

Notice in the Basic Matrix Theorem 2.2, assumption (II) implies
that the rows of the matrix are X convergent (in some uniform

sense). This is the reason for the terminology: X matrix.

Example 2. Let E be a complete normed group and {xi) converge to

0 in E. Then any subsequence of (xi} has a subsequence {xi }
k

such that & ]xi | < . The completeness implies that the series
k k
r X{ converges in E. Thus, in complete spaces a sequence is X
k

convergent iff it converges to O.
In general the statement in Example 2 is false as the following

example shows.

Example 3. Let €00 be the vector space of all real sequences {tj)

such that t. = 0 eventually. Equip 50 with the sup-norm. Let

J
ey, be the sequence in Coo which has a 1 in the kth coordinate

and O elsewhere. Consider the sequance ((llj)ej) in 00" This

sequence converges to O in €00 but no subseries of the series
Z(l/j)e.j converges to an element of €o0" That is, this sequence

converges to 0 but is not X convergent.

Examples 2 and 3 might suggest that a (normed) space is complete
iff it has the property that every sequence which converges to 0 is
X convergent. There are, however, normed spaces which have this
property but are not complete. A topological group which has the
property that any sequence which converges to O is X convergent

is called a _X _space. Klis ([45]) has given an example of a normed



