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Preface

Over the past few decades, the electronics industry has gone through a very rapid
evolution towards microscale surface finishing, where high-tailored surface finishing
including film formation, etching and ion implantation plays an important role.

Electrochemists and electrochemical engineers have developed many new processes and
techniques, including plating and etching with photo-mask technology which permits
micron and sub-micron dimensions, plating with extremely tight thickness and composition
control, and plating with tightly controlled agitation and current distribution. Nowadays
some of the most advanced techniques include electroless plating of a cobalt alloy with a
very thin and homogeneous thickness for high-density magnetic disks, electroplating of a
permalloy alloy with high compositional control in narrow places for the thin-film magnetic
recording head and electroless plating of copper with very reliable connectors for more than
60 multi-layer boards. The demands of the electronics industry thus present a tremendous
challenge to electrochemists and electrochemical engineers worldwide.

The International Symposium on Electrochemical Technology in Electronics held in
October 1987 in Honolulu, Hawaii, as a part of the 172nd meeting of the Electrochemical
Society Inc. was cosponsored by the Electrochemical Society of Japan and the Japan
Society of Applied Physics. In September 1989, symposia on Electronic Materials in
Electrochemical Technology and Electrochemical Processing for Tailored Materials were
held in Kyoto, Japan, as part of the 40th International Society of Electrochemistry (ISE)
Meeting. Some of the coorganizers of these symposia decided to publish review books on
this field to stimulate further high-tailored research in electrochemical technology.

Hence, the editors selected various topics from these three symposia as the basis for this
volume. We hope the topics discussed will contribute to the development of a higher level
of electrochemical processing and create new areas of research and development.

January 12, 1993 Noboru Masuko

Tetsuya Osaka
Yasuhiro Fukunaka
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Future Perspectives in
Electrochemical Processing and Technology

Noboru Masuko*! and Tetsuaki TSUDA*2

*1 Institute of Industrial Science, University of Tokyo, 7-22-1 Roppongi, Minato-ku, Tokyo 106, Japan
*2 Surface Coating Technology Section, Sumitomo Metal Industries Ltd., 1850 Minato, Wakayama 640,
Japan

1.1 Introduction

While the subject of thin film growth on tailored materials is not new, its fundamental
basis has not been fully established. It is possible to trace work back to AD 752-757 in
Japan, when ancient craftsmen applied a gold-amalgam process to a large bronze statue
15 meters high, to plate a uniform gold layer of 5 micrometers thickness. Today,
sophisticated wet processes are applied to advanced fabrication of micron size devices.
For instance, magnetic thin film heads are fabricated utilizing micro-pattern electroplating
technology through polymeric mask (see photo). Nevertheless, the development on
electrodeposition processes still seems to remain as a state-of-art technology, and the theory
of electrodeposition tends to limp behind the art to some extent. Further progress in basic
understanding of electrodeposition processes will be essential for process optimization and,
more importantly, for creative designs of innovative electrochemical systems, despite the
wide variety of electrodeposition processes and the complicated chemistry involved.

In this short overview, the two key factors affecting the microscopic morphology, on a
scale (microns) comparable to the thickness of solid phases on a substrate, of electro-
deposited layers are discussed. Morphology of electrodeposit is influenced by various
process variables, e.g. substrate materials, current density or cathode potential, electrolyte
temperature, concentration of metal ion (i.e. major discharged species), other cations,
anions, complexing ligands, inhibitors and pH, agitation of electrolyte which occasionally
is not well-defined quantitatively, etc. From a phenomenological point of view, the
electrodeposit becomes noncoherent, spongy, dendritic and /or powdery in general in the
specific current density range, namely, at or below the exchange current density i, and at or
above the mass-transfer limiting current density ;. Compact deposits are obtained in a
certain current density range in between i and i, to the contrary. Itshould be noted that
the aim of this overview is to provide a framework of ideas, in view of both kinetic and
mass transfer parameters, which can be used to visualize various industrial electro-
deposition processes in perspective.

1.2 Electrodeposition Process

1.2.1 Kinetic and Transport Aspects of Electrodeposition
A relation between flux of electrodeposited species N(j) and partial current density i, is
represented in Faraday’s law equation for each species j:

3
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Photo 1. Tailored materials manufactured by wet-processes in ancient and modern Japan.
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No =iyl ZiF (1.D)
where Z;is the number of electrons transferred in the cathodic reaction, and Fis the F araday
constant. The average growth rate normal to the substrate of electrodeposited layer in the
presence of simultaneous side reactions, such as hydrogen co-evolution, is then given by,

R,=iereM|ZFp (1.2)
where R, denotes the growth rate, i the total plating current density, ¢r plating current
efficiency, M molecular weight, p the density of electrodeposited metal, and Z the number
of electrons consumed or released in an electrochemical reaction.

Thin boundary layer approximation leads to the separation of the electrodeposition
process into two parts.  Firstly, the description of the kinetics very close to the cathode in
the reaction layer (of the order of 1-10 nm), and secondly the description of the mass
transfer of ionic species through the diffusion boundary layer from the bulk of solution to
just outside the reaction layer.

Electrodeposition rate may be expressed by the Tafel equation in case |BZFn/RT|>>>1

i=1doexp [—BZFn/RT] (1.3)

or in the rate constant form, assuming first-order rate process,
kr = krexp [~BZFn/RT] (1.4)
Nij=krCs (1.5)

where iy stands for exchange current density, B transfer coefficients, n surface overpotential,
R gas constant, T absolute temperature, kg heterogeneous rate constant, kg value of kg at
1 =0, Cs denotes the concentration of metallic ions Just outside the double layer.
General equation for the mass transfer of species j in a dilute electrolyte) may be written as a
summation of the electric migration term, diffusion term and convection term.
Ny =—ZUFCN®— DV C+ GV (1.6)
Here, the subscript j designates species j, A; vector flux of species j, U the mobility, Z the
ionic charge, C the concentration, d the diffusion coefficient, and ¥ the fluid velocity
vector. Influence of the ionic migration can be neglected in the presence of excess
supporting electrolyte, thus Eq. (1.6) reduces to the convective-diffusion case.? By
introducing mass transfer coefficient ky, the flux being transported through the diffusion
layer 8p towards the outside of the double layer is then
Nijy=kwm (Cs— Cs) (L.7)
and
kv = D;/ép (1.8)
where, C= is the bulk concentration of metallic ions to be electrodeposited. Substitution
of Egs. (1.7) and (1.8) to Eq. (1.5) gives,

Co
CG=—"""— (1.9
1+ (kr/km)
1 1\
Ny = Cw(—kR——f“E) (1.10)

Limiting current density can be obtained when Cs=0, for Eq. (1.7), and combining
Eq. (1.1),
NL=kuCs (1.11)
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or

ir=ZFDC«/ép (1.12)

The degree of electrodeposition uniformity is characterized by the Wagner number,
which represents the ratio of the electrochemical reaction to the Ohmic resistances.

K dn
W=——-—- 1.13
L di (1.13)
or
_ kKRT ..
W= —LiBZF for Tafel polarization (1.14)

Here, k is the conductivity of electrolyte, and L is the characteristic length dimension. The
larger the Wagner number, the more negligible the primary current distribution. For
microscopic topography of electrodeposits in the length order of microns, where I,
microscopic current distribution would be nearly independent of ohmic potential
differences in the electrolyte, corresponding to very large W.

1.2.2  Electrocrystallization of Metal
The driving force of electrocrystallization® may be written as, :
Ap=kTIn (1+ o) (1.15)
where k is the Boltzmann constant and o is the supersaturation expressed by

o =exp [—ﬂ]— (1.16)

On a parallel with the vapor deposition of metals, growth rate R, and nucleation rate
would be increased as supersaturation is increased. Unfortunately, there is so far no
comprehensive model of electrocrystallization, relating atomistic scale processes to
microscopic morphological development, due to the complexity arising from the presence
of metal-solution double layer, adsorbed molecules or ions, desolvation of charged species,
etc. As afirst approximation, surface overpotential n in Eq. (1.3) may be associated with
supersaturation o in Eq. (1.16), although 7 is not divided into charge-transfer and
crystallization overpotentials as individually defined by Vetter.¥ Thus, we may expect
enhanced nucleation and growth, increasing surface overpotential »n, which is also an
increasing function of the fraction i/, and vice versa.

According to Fischer’s classification of polycrystalline deposits,” it is known that
morphology of electrodeposit varies with surface overpotential 7, in the following order:
FI-BR—->FT—->UD—->DorP
where F1 is “field oriented isolated crystal type,” BR is “basis oriented reproduction type,”
FT is “field oriented texture type,” UD is” unoriented dispersion type,” and D or P is

“dendritic and/or powdery crystal type.”

Ibl® pointed out that instability of surface roughness could occur for a diffusion-
controlled process due to difference in the diffusion boundary layer thickness between peak
and recess. Namely, ipeax Will be greater than irecess, because Speax is smaller than Srecess,
resulting in evolution of dendritic growth at peaks. Popov ez al.’™-9 studied the spongy
deposit formation, which is caused by mass-transfer limitations under conditions of low
nucleation rate (e.g. low overpotential  and smalli;). Pavlovic et al.2%) interpreted copper
dendrite formation in terms of the ratio ir /io. Typically, metals with high exchange current
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i0(4)

1'0(3)

i (2)

Current Density i /A/cm?
Iy

i (1)

Overpotential 7 /V
Fig. 1.1 Schematic diagram of operational windows for various electroplating systems.

Exchange current density Limiting current density Process variables window
case I [iot0 . L] Line A-E
case II [io) . @] Line A-G
case III [io 5 iL] Line B-F
case [V [io 5 @] Line B-H
case V [iot) 5 2] Line C-1
case VI [io s P ] Line C-I for i
C-J forn

densities, such as silver or aluminum in chloroaluminate melt, form nodular, dendritic and/
or powdery deposits during electrodeposition more readily than the metals with low
exchange current densities, such as nickel or iron.

Along the lines of Winand’s diagram,!® Fig. 1.1 illustrates the conceptual basis for the
optimal range of process variables (i, 1) to obtain compact deposits, for a given
electrodeposition process characterized in terms of the kinetic parameter i, and the mass
transfer-related parameter i.. Coherent deposit is obtained when ip <i<i.. Ideally, i
should be much higher than i, and it is also recommended that i not exceed about half of
i.. Wider operational windows are achieved by lowering i, and/or increasing i, values,
which can be easily seen by comparing cases I, 11, IIl and IV. Organic additives, such as
thiourea, poly acrylamides, polyethylene glycol, etc., are often introduced in the electrolyte
in very minute amounts to inhibit the kinetics of electrodeposition by adsorption
mechanism in practice. For metal deposition with high exchange current densities close to
limiting current densities, such as seen in case V, application of pulse plating may offer the
possibility of higher overpotential deposition, as in case VI, for tailoring the quality of
deposits.

1.3 Hydrodynamic Effects
As described in the previous section, electrodeposition process is a multi-successive

process, involving mass transfer and kinetic reaction at the cathode surface. Mass transfer
depends greatly on convection, which is governed by the fluid velocity field in the system.



