The BYTE Book of

Pascal

Edited by Blaise Liffick

The BYTE Book of

Pascal

Edited by
Blaise W. Liffick

Second Edition

BYTE/McGraw Hill
70 Main St
Peterborough, N.H. 03458

The authors of the programs provided with this book have carefully re-
viewed them to ensure their performance in accordance with the specifications
described in the book. Neither the authors nor BYTE Publications Inc,
however, make any warranties whatever concerning the programs, and assume
no responsibility or liability of any kind for errors in the programs or for the
consequences of any such errors. The programs are the sole property of the
authors and have been registered with the United States Copyright Office.

Copyright © 1979 BYTE Publications Inc. All Rights Reserved. Portions
of this book were previously Copyright © 1977, 1978 or 1979 by BYTE Pub-
lications Inc. BYTE and PAPERBYTE are Trademarks of BYTE Publications
Inc. No part of this book may be translated or reproduced in any form with-
out the prior written consent of BYTE Publications Inc.

Library of Congress Cataloging in Publication Data

Main entry under title:
The BYTE Bock of Pascal.
(Language series)

A collection of articles from BYTE Magazine.
1. Pascal (computer program language) 1. Liffick,

Blaise W. 1l. BYTE. Ill. Series: Language series
(Peterborough, N. H.)
QA76.73.P2B18 001.6'424 79-22958

ISBN 0-07-037823-1

Printed in the United States of America

INTRODUCTION

This book is part of the ““Language Series” of BYTE Books. It is a collection of the
best articles from past issues of BYTE magazine, the leading technical journal in the
microcomputer field. The language under discussion is a relatively new computer pro-
gramming language, Pascal. Until recently, Pascal has only enjoyed a large following
in the academic community, and only more recently has it been practical to use this
language with microcomputers. But the curious thing about Pascal is its ability to win
nearly instant converts; so, while Pascal may be one of the newest computer
languages, especially in the field of microcomputers, it is also one of the fastest grow-
ing in use and acceptance.

The purpose of this book is twofold. First, for those uninitiated, the articles contain-
ed in this book can serve as a general introduction to Pascal, providing the background
information necessary for a potential user. The Comments section itself is a general
discussion of the properties, merits, and applicability of Pascal. It includes reprints
from the “Languages Forum” of BYTE magazine, an ongoing dialogue among the
magazine’s knowledgeable readers. The Forum is intended as an interactive dialogue
about the design and implementation of languages for personal computing. In addi-
tion, an editorial by Carl Helmers, one of the industry’s leading proponents of Pascal,
rounds this section out as a beginning point for those unfamiliar with the language.

Second, for those requiring a more in depth study of the merits of the language and
its possible implementation, there are two sections, About the Language and Applica-
tions.

About the Language provides insights into the usefulness of Pascal by comparing it
to BASIC and COBOL. Also, a detailed look at some possible implementations of the
language helps define the scope of the impact on the industry. This includes listings of
a Pascal to p-code compiler written in both Pascal and BASIC, and two listings in the
appendices: one a p-code to 8080 assembly language conversion program in BASIC;
the second a “tiny” Pascal compiler and p-code interpreter written in 8080 assembly
language.

The final section is Applications and, as the name implies, includes several applica-
tion and system programs written in Pascal. For general applications there is an
automatic metric conversion program, nontrivial implementation of a chess program,
and an implementation of a print utility program. In the area of system software there
is the choice of two language implementations: one is a minimum implementation of a
language, written in less than 256 words (it has surprising usefulness); the other is an
APL interpreter.

So, this book provides not only a general introduction to the Pascal language, but is
also a tremendous resource for software: two versions of a Pascal compiler, one writ-
ten in BASIC and the other in 8080 assembly language; a p-code interpreter written in
both Pascal and 8080 asembly language; a chess playing program; and an APL inter-

preter.
Finally, a note about how the articles in this book were updated. We have been very

careful to make corrections to articles where an error has been made in the original ar-
ticle. However, because many of these articles are reprinted from back issues of BYTE
magazine, some of the information contained in them is out of date. This information
is flagged in the form of footnotes within the article, and includes such items as page
references and the availablity of UCSD Pascal. All footnotes throughout this book can
be taken as current as of 1 July 1979.
Blaise W. Liffick
tditor

vi

Notes by C Helmers

Readers will note a lack of con-
sistency in the typography of various
articles on Pascal.

One area of questionable typo-
graphy is a bit nebulous and less sub-
ject to editorial fiat when “camera
ready” type is received from authors:
the style of representation of Pascal
program listings. The ideal style is of
course that used by Niklaus Wirth in
his book Algorithms+ Data Struc-
tures =Programs, published by Pren-
tice-Hall in 1976. This style uses bold
face type in lowercase for representa-
tion of the Pascal language keywords.
It uses italics for the representation of
specific variable names, procedure
names and literal values which are
part of the program. In articles by
authors Ken Bowles (page 51), Charles
Forsyth and Randall Howard (page 33),
and Allan Schwartz (page 41) this nota-
tion was used. But in two of these
cases, the authors supplied camera
ready typeset copy along with the
articles involved, in order to minimize
potential errors due to keystroking.
Since two of these were typeset at
BYTE, and the other two were typeset
with different type specifications on
different machines, there is naturally a
different aesthetic flavor to the listings

Consistency — or a Lack Thereof . ..

in these articles. A close variant of this
form is seen in the listings of David
Mundie’s article (page 7) where bold
fact type and normal type are mixed in
the listing.

There is yet another variation on the
graphics used to represent Pascal pro-
grams, provided by the listings accom-
panying Stephen Alpert’s article (page
27). Here, the camera ready listing was
supplied by the author as printed on
an uppercase line printer, so keywords
are indistinguishable from program
details on the basis of typography
alone.

What can we conclude about this
inconsistency? Our goal at BYTE is to
asymptotically approach the notation
of Pascal programs in the bold face
and italic form whenever we do the ac-
tual typesetting of a listing. The italic
and the bold face typography pro-
vides an excellent contrast to normal
type when elements of a program are
mentioned within text. But when a
manuscript comes with a usable
camera ready listing of a Pascal pro-
gram, such details of aesthetics must
take second place to the goal of mini-
mizing errors of transcription: it is far
better to use a camera ready image
derived from a machine produced list-
ing than to key in a program manually
in order to create a typeset form of the
listing. . . .CH

TABLE OF CONTENTS

INTRODUCTION .. e e e e e e

COMMENTS

UCSD Pascal: A (Nearly) Machine Independent Software System

Ken Bowles $BYTE Magazine May 1978)

In Praiseof Pascal
David Mundie (BYTE Magazine August 1978)

Comments on Pascal, Learning How to Program, and Small Systems

Gary Ford (BYTE Magazine May 1978)

Is Pascal the Next BASIC?

Carl Helmers (BYTE Magazine December 1977)

Concerning Pascal: A Homebrew Compiler Project

Stephen P Smith (BYTE Magazine April 1978)

A Proposed Pascal Compiler

Kin-Man Chung, Herbert Yuen (BYTE Magazine August 1978)

ABOUT THE LANGUAGE

Pascal, A Structurally Strong Language

Stephen R Alpert (BYTE Magazine August 1978)

Compilation and Pascal on the New Microprocessors

Charles H Forsyth, Randall } Howard (BYTE Magazine August 1978)

Pascal versus BASIC: An Exercise

Allan M Schwartz (BYTE Magazine August 1978)

Pascal versus COBOL: Where Pascal Gets Down to Business

Ken Bowles (BYTE Magazine August 1978)

A “Tiny” Pascal Compiler

Part 1: The P-Code Interpreter (BYTE Magazine September1978)
Part 2: The P-Compiler (BYTE Magazine October1978)
Part 3: P-Code to 8080 Conversion (BYTE Magazine November1978)

Kin-Man Chung and Herbert Yuen

“Tiny” Pascal in 8080 Assembly Language 91
Dr B Gregory Louis

APPLICATIONS

WADUZITDO: How to Write a Language in 256 Words orLessttt 97
Larry Kheriaty (BYTE Magazine September 1978)

Creating a Chess Player e e e e
Part 1: An Essay on Human and Computer Chess Skill (BYTE Magazine October1978) 107
Part 2: Chess 0.5 (BYTE Magazine November 1978)ottt e e e et 117
Part 3: Chess 0.5 (continued) (BYTE Magazine December 1978) 131
Part 4: Thoughts on Strategy (BYTE Magazine January 1979) i e 143

Peter W Frey and Larry A AtKiNot e e

An APL Interpreterin Pascal e 157

Alan Kaniss, Vincent DiChristofaro, John Santini

A Pascal Print Utility Programo e e 163
Carl Helmers

An Automatic Metric Conversion Program e 189
David A Mundie

A Computer-Assisted Dieting Programttt e 197
David A Mundie

APPENDICES
A Listing 1: Pascal Run Time Routines 203
Listing 2: P-Code to 8080 Assembly Language Translator 214
B Listing 1: A Sample Compilation in “Tiny” Pascal 221
Listing 2: 8080 Run Time Routines for Pascal ObjectCode 235
Listing 3: P-code to 8080 Translator Routines 241
Listing 4: P-code Interpreter 252
Listing 5: Pascal to P-code Interpreter 265
Listing 6: Sample Codes for DEOUT, OSEQ and MOVE Routines 287
C AnAPLInterpreterin Pascal. 291
AUTHOR S DIRECTORY . . ottt ittt tet e tete e teteasaseeasaeenoneeeaasneanensneesanenensnannnans 333

Comments

Languages Forum

UCSD PASCAL:

A (Nearly) Machine Independent
Software System (for Microcomputers and

Minicomputers)

Overview

This article describes a complete inter-
active software system which can operate
virtually without change on many different
microcomputers and minicomputers. Because
the semiconductor industry is evolving new
equipment very fast, it is becoming a practi-
cal necessity to have machine independent
software to prevent rapid obsolescence of
large application programs. The software
described here has been developed at the
University of California San Diego (UCSD),
and is available to anyone for a $200 sub-
scription fee. This article presents an appeal
to readers of BYTE for help to bring about a
true community-wide software system for
business, educational and other professional
users of small cnputer systems. Help is
needed from the user community, since the
manufacturers have so far avoided stan-
dardizing software except as regards some
aspects of programming languages. For
single user microcomputers, it appears to
be far more practical to standardize the
entire software system than the language
processor alone!

The Software System

UCSD Pascal is a complete interactive
software system for small computers, yet
it offers many features normally found only
on medium and large scale machines. It is
designed to operate, with minimal adapta-
tion, on most microcomputers or mini-
computers based on 8 bit bytes or 16 bit
words. Supported versions are now available
for use on machines based on the Digital
Equipment LSI-11 or other PDP-11 pro-

Kenneth L Bowles

cessors, and on the 8080 and Z-80 micro-
processors. Having first been sent to users
in August 1977, the system is in use on
approximately 60 mainframes using these
processors (as of mid February 1978), and
the list of both users and processors has
started to grow rapidly. Versions not yet
supported by the Project are operating,
or nearly operating, on four other pro-
cessors (General Automation 440, Univac
V75, Nanodata QM-1, National Semicon-
ductor PACE). The UCSD Pascal Project
is discussing arrangements with various
manufacturers whereby supported versions
can be released for most other popular
microprocessors, and additional inquiries
would be welcomed.

The system is written almost entirely in
the Pascal programming language, ex-
tended for system programming and for disk
based interactive applications. Far more than
a simple compiler for Pascal, it should be
viewed as a complete and fully integrated
system which is self-maintaining, and gen-
erally independent of software from any
other source. The system operates in a small
pseudomachine (interpreter) which can be
written in the native machine language of
conventional processors, or can be micro-
programmed on machines which provide
that capability. The object code processed
by the Pascal pseudomachine is com-
pressed relative to conventional object code,
and consumes roughly one third to one half
as much space as the native object code of
most present day processors. A feature to be
implemented soon will allow mixing Pascal
pseudocode routines, for efficient use of
memory, with native code routines, for fast
processing.

The system is the product of a growing
project team, and is evolving rapidly in an
upward compatible way. As of early 1978,
the system represents the equivalent of about
15 full-time years of programming and
design effort. Major components of the
system currently being distributed include
the following:

® Single user operating system.

® Pgscal Compiler. Standard Pascal
plus extensions for strings, disk files,
graphics, system programming (busi-
ness oriented extensions are planned).

® Fditors. High performance screen
oriented editor for program develop-
ment and word processing, line oriented
editor for hard copy devices.

® fjle Manager. General purpose utility
for maintaining a library of disk files
(usually floppy disks).

® Debugger. Single statement and break-
point processing, access to program
variables.

® (Utilities. Programs for printing, com-
municating, accessing disks written
under DEC’s RT11 system, diagnosing
disk faults, desk calculator, etc...

® BASIC language compiler. Imple-
mented for those who insist on using
BASIC, but may wish to write power-
ful subroutines in Pascal. (The com-
piler works, but subroutine binding is
not yet ready.)

Major components now operating, but
not quite ready for general distribution,
include the following:

® CA/ Package. Adaptation of the major
Computer Assisted Instruction package
developed at University of California
Irvine; includes automated materials
for an introductory Pascal program-
ming course.

® Assemblers. For the PDP-11, 8080
and Z-80, these are written in Pascal
for machine independence, but gen-
erate native code for those processors.

® TREEMETA. A metacompiler devel-
oped at UC Irvine.

The UCSD Pascal Project

The Project is one of the principal activi-
ties of the Institute for Information Systems,
an embryonic ‘“‘organized research unit”
concerned with interdisciplinary studies, and
with related instructional and public service
activities. The main objectives of the Project
include the following:

® Machine Independence. To foster the
widespread use of machine indepen-

dent software systems, particularly for
small computers, as a means to avoid
software obsolescence. A major premise
of the project is that applications soft-
ware can best be made-truly portable
by making the entire operating system
and support software portable to a
new processor at the cost of only a
small effort (eventually: one to three
programmer months; currently: about
six months).

® Pascal. To promote the widespread
use of standard Pascal, and stan-
dardized extensions, as (the basis of) a
general purpose programming language,
both for writing system programs such
as operating systems and compilers,
and for applications software in educa-
tion, research and business data pro-
cessing.

® Software Exchange. To foster the
development of a national or inter-
national marketplace within which
authors of computer based course
materials, and other applications soft-
ware, may receive reasonable royalties
to compensate them for their work. As
an initial step, the Project will operate
a Software/Courseware Exchange,
using Tele-Mail techniques, for users
of the UCSD Pascal Software
System.

® Mass Education. To demonstrate that it
is practical to improve the quality of
mass education at the coliege level
(and adult training in technical topics),
while simultaneously reducing costs,
through the use of microcomputer
based course materials.

® Research and Development. To provide
facilities, a team working environment
above critical size, and salary support
for students and faculty members who
wish to conduct research or develop-
ment projects in software engineering
and many related fields of study.

Hardware Configuration

The UCSD Pascal system has been
designed to run as a single user interactive
system with superior response characteristics
when one or more floppy disks are used for
secondary storage. Wherever possible, single
character commands are used, and prompting
messages remind the user of the significance
of the various commands that are available
in different contexts. While the system has
proven that machine independence of a com-
plex software system is practical, there are
of course practical limits to the range of
characteristics that can be accommodated on
the host machine. The major characteristics
of a typical system needed to run UCSD

Pascal include the following:

® Main memory. 56 K bytes (48K
will do, but only for compiling small
programs).

® Word Size. 8 bit bytes, 16 bit words
(hardware or simulated).

® Secondary Storage. Standard 8 inch
floppy disk (the major system program
files occupy roughly 70 K bytes).

® Console Display. 9600 bps ASCII
terminal with x-y cursor addressing
works best (slower CRTs or hard copy
terminals can be handled, but less
effectively).

® Keyboard. Uses ASCII keys for CR,
ESC, ETX, BS, DEL and four posi-
tioning arrows (up, down, left, right).

In addition, the system is being used to drive
a variety of printers such as the Diablo
HYTYPE and Printronix 300, and for com-
municating via standard asynchronous lines.

Compatibility with Other Software Systems

In Project discussions with manufacturers
of computers, on which the UCSD Pascal
System might potentially be run, the most
frequently asked question is: ‘“‘How much
effort will it take to adapt Pascal to run
under my software system?” This question
is understandable in view of the approach
generally taken by the computer industry
when a new language is to be installed on a
machine produced in quantity. Unfor-
tunately, this question misses the main point
the Project is trying to make regarding trans-
portable software. The effort needed to con-
vert the Pascal compiler to run under the
operating system of manufacturer “X" will
generally be far greater than the effort to
make the entire UCSD Pascal system run
on that manufacturer’s hardware. In the
interest of promoting software transportabil-
ity, the Project will generally not agree to
adapt just the compiler to run under another
operating system.

Pascal Language Extensions

Like many others who use Pascal as
the basis for writing large system programs,
the Project has found it necessary to extend
the language. The most notable extensions
have to do with strings of characters, for
natural reading and writing from and to inter-
active files, and for tools needed in writing
the software. A concerted effort has been
made to implement all of the ‘standard”
Pascal language as defined in Pascal
User Manual and Report, by Kathleen Jensen
and Niklaus Wirth (Springer Verlag, New
York and Heidelberg, 1975). (However,

UCSD Pascal still lacks the ability to
allow procedure and function names to be
passed as parameters.) The Project is making
an effort to serve as coordinator among
several large industrial firms which are pre-
paring to use extended versions of Pascal
for major programming projects. It is hoped
that a consensus will emerge from this effort
on extensions to the language for system
programming. UCSD Pascal implements
integers in two’s complement form in 16
bit words, and real numbers in a 32 bit
field. Since neither form is suitable for
large integers or for business applications,
it is planned to add the facility to handle
fixed decimal numbers whose precision may
be declared by the programmer.

Speed of Execution

Although the system is entirely inter-
pretive, as currently implemented, execu-
tion speed is fast enough to permit highly
interactive programs to be run on micro-
computers. For example, compilation speed
ranges from 600 to 700 lines per minute on
the DEC LSI-11, or on an 8085 with a 3 MHz
clock.

Availability

Copies of the system may be obtained by
writing to UCSD Pascal Project, Mail-
drop C-021, La Jolla CA 92093. The system
is available at a subscription fee of $200,
made payable to “Regents of the University
of California,” which pays for materials,
handling, and a limited amount of direct
assistance to users. Those who wish to
order the system should send details de-
scribing the system on which they wish it to
run, or should request an order blank from
the project. The system is copyrighted, but
rights are granted to educational institutions
and to bonafide computer clubs to make
additional copies for their own noncommer-
cial uses. A copy of the latest package of
printed user manuals (about 250 pages) is
available at a charge of $15, again made
payable to the Regents of the University
of California.

Though plans are in motion to convert
the system to run on many different pro-
cessors and configurations, the only systems
currently supported use LSI-11, 8080 or
Z-80 microprocessors with at least 48 K
bytes of main memory, and IBM 3740 com-
patible standard floppy disk drive(s). For
8080 and Z-80 users, the method of adapting
the system to run on new hardware is similar
to that used by Digital Research Inc in
distributing the CP/M operating system; and
the Project will distribute a conversion
package similar to theirs. Versions of the sys-

As of this writing
(1 July 1979), SofTech
Microsystems Inc (94
Black Mountain Rd,
Building 3, San Diego
CA 92126) is the sole
licensee of the UCSD
Pascal system. Ques-
tions about prices and
availability of the sys-
tem can be directed to
the above address.

Also, note that
UCSD Pascal is a
trademark of the
Regents of the Uni-
versity of California.

tem for other microprocessors are not likely
to be ready for release until October 1978 at
the earliest. Release on floppy disks other
than those compatible with the 3740 format
will depend upon availability of hardware to
the Project.

In addition to the main software system,
educational materials are available separately
for an introductory course on problem solv-
ing and programming using Pascal. A
textbook (Microcomputer) Problem Solving
Using Pascal is available from Springer
Verlag Publishers, 175 Fifth Av, New York
NY 10010 ($9.80). The Project can supply
a set of automated quizzes designed for use
with the textbook in a self-paced course
of study.

Help from the User Community

Readers can help by letting their favorite
hardware vendors know that they want
UCSD Pascal to be available in machine
independent form. The Project has noted
an increasing number of manufacturers who
report that customers are requesting
Pascal, and this has a real influence on

their business decisions. Readers can also
help by joining the international Pascal
Users’ Group (send $4 c/o Andy Mickel,
227 EX, 208 SE Union St, University of
Minnesota, Minneapolis MN 55455) and
pressing PUG to establish a technical board
to oversee UCSD Pascal as a community
project.®m

Note on the Pascal User’s Group

As of July 1, 1979 the Pascal
User’s Group (PUG) has over 3300
members in 47 countries. Those in-
terested in joining can contact Andy
Mickel at the University of Minnesota
Computer Center, 227 Ex Engr, Univer-
sity of Minnesota, Minneapolis MN
55455, (612) 376-7290. The Pascal
Newsletter is published four times a
year on a July to June schedule, with a
subscription fee of $6 per year. All
issues for the current year are sent
with a new subscription, and back
issues are available.

Languages Forum

In Praise of Pascal

As has been pointed out in these pages
before, personal computing will never
achieve its full potential as long as our
state of the art machines are hobbled down
with a language as far from state of the art
as BASIC is. Some have argued for designing
a special high level language for micro-
processors, but | personally fail to see why
we don’t just implement Pascal and be
done with it. | would like to look briefly
at the language itself and try to explain why
it seems the logical choice to me.

| am an applications programmer with no
theoretical interest in computing whatso-
ever. What | like about Pascal is not the
theory of its design, though that seems
sound enough, but rather the fact that it
lets me formulate my problems in my own
terms. In Pascal more than in any other
language | know, | can remain on the ab-
stract, algorithmic level where, as a human
being, | function best. Because of this
pragmatic bias, much of what follows will
be an informal discussion appealing to the
reader’s intuitions rather than a technical
demonstration. | shall use BASIC for com-
parative purposes, since it is the tyrant in
the field.

| find Pascal easy to use because it
allows me to define new data types which
express my data meaningfully. It provides
control structures with which | can express
what | want done to my data clearly and

naturally. Pascal allows and encourages
me to formulate my thinking in a sgructured
way. Let us examine these three aspects of

Pascal in reverse order.

Program Structure

Pascal is a resolutely structured
language. A Pascal program is structured

into blocks. Each block bears a heading"

which gives it a name and specifies its

David A Mundie

parameters. Roughly speaking, a block
consists of a definition part, in which
constants, types, variables, and subroutines
are defined, and an action part, which con-
tains the algorithm of the block. This
rigorous separation of data definition and
algorithm expression is partly responsible,
it seems to me, for the greater legibility of
Pascal compared to ALGOL.

Subroutines are themselves block struc-
tured and may thus be nested within one
another. This allows the declaration of
“local’’ variables and subprograms, meaning
that storage may be allocated efficiently;
yet it is easy to guard against unwanted side
effects.

What does all this mean for the practicing
programmer? The answer may perhaps best
be seen in the light of a claim recently re-
peated by David Higgins in the October
1977 BYTE (“Structured Program Design,”
page 146). Higgins presents the now well
established arguments in favor of structured
programming, but goes on to contend that
once a program is designed in a structured
way, using for example Warnier-Orr dia-
grams, ‘it does not matter what program-
ming language you code it in.” This assertion
seems pretty improbable on the face of it,
and if true it would be a powerful argument

against Pascal. | think that a rapid ex-
amination of two test cases will show it to
be quite unjustified.

Let us take our test cases from the ‘“‘bug”
program which Higgins uses as his own
example. Higgins would have us break the
program down into three parts, as expressed

in the following Warnier-Orr diagram:

begin program

bug program games (1,9)
end program

Nothing in the BASIC listing which accom-
panies the article even remotely suggests

(0.1

01}

0,3}

()

ROLL = "4"
0.1}

O

ROLL = “5"
0,1}

o

- ROLL = ‘8"
('R })

&

this overall algorithm. Look at what we

might have in an equivalent Pascal
program:
program bug;
begin
beginprogram;
games;
endprogram
end.

Need | point out that to all intents and pur-
poses the Pascal program /s the Warnier-
Orr diagram, with only a few notational

| rOLL="1"

_ROLL="2"

ROLL = "3"

differences such as the replacement of the

rBE(}!N TURN { ROLL THE DIE

PLAYER ALREADY HAS A BODY

(0,1)

©)

PLAYER ALREADY HAS A BODY

0,1
HAS NECK
0.1
HAS BODY
o ©
@ . HAS NECK

HAS BODY
{0.1)

HAS NECK. -
o N)
@ | RAsHEAD
HAS NECK
0.1 smp -
2 ANTENNA
(0.1
HAS HEAD
10.1)
2 ANTENNA
@ 0,1
HAS HEAD
(0.1 5""’
HAS TAIL
(0.1)

HAS BODY

S e)
@ HAS TAIL
G ST

HAS 6 LEGS
HAS BODY
(0.1}
HAS BODY
0,1}

10,1)

O

- HAS 6 LEGS
0.1)

{SKIP

{GIVE PLAYER A BODY

{SKIP

GIVE PLAYER A NECK

{GlVE PLAYER A TAIL

{SK:lP

{GNE PLAYER 1 LEG

Figure 1: Warnier-Orr diagram for subprogram “turn’ of the bug program.
This is clear, but note how much bulkier it is than the Pascal program in
listing 2. The Warnier-Orr diagram won’t even run on a computer.

8

brace by the symbols begin and end? Are we
really asked to believe that this one to one
correspondence between the problem and
the program does nothing to simplify the
programming task? On the contrary, it
simplifies matters enormously.

Considerations of space prevent me from
giving the rival BASIC and Pascal versions
in full. Another striking example is pre-
sented in figure 1 and listings 1 and 2,
which show the Warnier-Orr diagram for the
“turn” subprogram, Higgins’ coding of the
subprogram in BASIC, and the Pascal
equivalent. Higgins calls his BASIC coding
“simple and straightforward.” Tastes differ
but that is a phrase | would have reserved
for the Pascal version. Higgins has had to
fake truly structured programming in a
language which fights his efforts every step
of the way, and the results are tortured
and confusing. In contrast, the Pascal
coding is, once again, a nearly perfect
reflection of the Warnier-Orr diagram, so
much so, in fact, that most Pascal users
will probably feel, as | do, that the diagrams
are a useless intermediary step, less clear
and bulkier than the program itself. The
intent of the Pascal program segment is
so transparent that in my opinion it could
almost be understood by a complete pro-
gramming novice.

Before leaving the topic of program struc-
ture, we should perhaps remark that Pascal
subprograms (procedures and functions)
bear names, not numbers, virtually elimina-
ting the need for the comments which
pepper any well documented BASIC listing.
Furthermore, because Pascal subprograms
can have parameters, the programmer is
encouraged to use a single subprogram for
a single task. Higgins has written separate
subprograms for each body part, whereas
for a Pascal user it is virtually impossible
to resist the temptation of passing the
arrays body, neck, head, etc, to a single
procedure ‘‘give’’ as parameters.

Algorithm Expression

Program structure alone does not explain
the relative clarity of the Pascal listing
in listing 2. We may also use that listing to
illustrate the tools which Pascal provides
for expressing algorithms.

Logical operators: Pascal provides the
logical operators (and, or, and not) which
are so painfully lacking in BASIC and with-
out which expressing an algorithm is so
clumsy. The use of the operator and in the
turn subprogram is a good example; or the
reader may want to express ‘‘if (x=1) or
((y>2)and(z=3)) then...” in BASIC.

Conditional statements: Pascal’s if
structure groups statements with the condi-

tions for their execution. The if statement is Data Definition
of the form:

. . Now that we have seen how much easier
if<expression>

then<statement 1> it is to express what one wants done to data
else<statement_2> in Pascal than in BASIC, let us turn to

The expression is evaluated as being either the wonderful data types which Pascal
true or false. If it is true statement_1 is makes available for manipulation. Data types
performed; otherwise statement_2 is per- are the programmer’s buffer between his
formed. Suppose the expression is: X=1. abstract formulation of an algorithm and the
In English the if statement translates to: messy realm of bit level details where that
] algorithm will eventually be executed.

if X equals 1 then perform state- Pascal makes defining new types a trivial
ment_1; else perform statement_ 2. task. Once a new data type is defined, it

is in effect indistinguishable from a pre-
defined type and may be used in any way a
predefined type may be. We leave BASIC
behind at this point, since that language
has no facilities for creating new types.

The bug program was too simple to
provide examples of data structuring, so
we shall have to turn elsewhere. Being a
birdwatcher, | shall replace the traditional
“Christmas card list” example by a bird data
bank. | can do no more than skim the sur-
face, so | ask the reader’s indulgence if some
of the listings are not fully explained. |
am not trying to teach Pascal, but merely
to spark intuitions.

Pascal distinguishes between simple

Pascal offers a very flexible case state-
ment which is remotely related to the com-
puted GOTO statement to be found in some
BASICs. It is much more powerful because,
among other things, selector values need
not be contiguous, and actions are grouped
with the conditions for their execution.
A good example of the case statement’s
clarity is to be found in the procedure
“turn,” where the action taken depends
on the value of roll.

Repetitive statements: BASIC provides
only one repetitive control structure: the
FOR statement. But there are innumerable
situations where we do not know ahead of
time how many times a given action is to
be repeated. In such cases BASIC users have
two choices. One is to set up a dummy

FOR statement with a jump out of it when 490 REM TURN SUBROUTINE
a certain condition is met: whence the 500 REM PLAY=]1,PLAYERS TURN-PLAY=2;COMPUTERS TURN
. i _ i 510 REM ROLL DIE
UbquItOUS FOR I=1 TO 9999 statements 520 LET ROLL = FIX@(((RND(0))*6.0))+1
in BASIC programming. This is bad because gig fg ;NJLLRolL'lx:HIZr? ’I'FROODY(PLAY) THEN GOSUB 690 ELSE;;ELSE
. - S ; : = B #1 i 1
it seriously disguises the intention of the 550 IF ROLL = 1 THEN 650
algorithm. One’s natural expectation is for 560 IF ROLL = 2 THEN IF BODY(PLAY) = 1 THEN IF NECK(PLAY)#1 THEN GOSUB 760
hig b d 9999 {j bt 570 IF ROLL=2 THEN 650
such 2 laop to be execute times, bu 580 IF ROLL=3 THEN IF BODY(PLAY)=1 THEN IF NECK(PLAY)=1
that is not the case. The other solution is THEN IF HEAD(PLAY)#1 THEN GOSUB 820
For th fak : 590 IF ROLL=3 THEN 650
or the programmer to fake an appropriate 600 IF ROLL = 4 THEN IF HEAD(PLAY)=1 THEN IF ANTE(PLAY)#2
control structure with GOTOs or condi- THEN GOSUB 880
. . 3 o 610 IF ROLL=4 THEN 650
tional jumps. That is what Higgins has done 620 IF ROLL = 5 THEN IF BODY(PLAY)=1 THEN IF TAIL(PLAY)#1 THEN GOSUB 940
in his program to express the fact that the 630 IF ROLL=5 THEN 650
. 640 IF ROLL = 6 THEN IF BODY(PLAY)=1 THEN IF LEGS(PLAY)#6 THEN GOSUB 1000
computer and the human take turns until 650 LET A=3
the game is over: 660 RETURN
210 REM TURNS (1,T) Listing 1: BASIC listing for Warnier-Orr diagram in figure 1. This is the best

ggg égggg%z ¢ one can do in BASIC, but is still a far cry from the clarity of the Pascal

240 IF EGAM = 0 THEN 230 listing.
250 REM END GAME
260 GOSUB 1150

This is no doubt the best one can do in

BASIC, but just consider how much more pr:ce_tri‘ure”t}-l_rtn; randomi T8I : wrislnleoll i aoaild:
elegant the Pascal version is: ﬁserr?)ll' ofﬂmC renee pwriteintrof i gt
) 1: if(body[player] #1)then give(body);
repeat turns until endofgame 2: if(body [player] =1)and(neck[player] #1) then give(neck);

o) .) 3: if(neck[player] =1)and(head[player] #1) then give(head):
This is typical of the way in which 4: if(head([player] =1)and(ante[player] #2) then give(ante);
Pascal’s tures make al- 5: if(body [player] =1)and(tail[player] #1) then give(tail);

. Contr(.)l SHc . 6: if(body[player] =1)and(legs[player] #6) then give(legs)
gorithm expression a source of joy rather end
than a contortionist exercise. In addition to end;

the repeat statement, Pascal offers a ™

while statement for the case when an action Listing 2: The Pascal listing equivalent to listing 1. Note the clear affinity
is to be repeated as long as a condition is between the listing and the Warnier-Orr diagram. Notice that arrays are in-
true. ’ dexed using square brackets.

10

and structured types. Let us examine each
in turn.

Simple types: These are the basic build-
ing blocks of which any structured type,
no matter how complex, is ultimately com-
posed. In addition to integer, real, and
character types, Pascal offers two addi-
tional simple types which as far as I'm con-
cerned come close to exhausting the simple
types needed in a general purpose language.
The first is the defined scalar type, and is
defined by simply listing the values which
a variable of the new type may take on.
Suppose | need a data type for the various
habitats in which a bird may appear. In
Pascal | write:

type h = (ocean,rivers,fields,suburbs, forests,
mountains)

A variable of type h may take on any of
the values listed. This means that while
programming | may continue to think in
terms of habitats, and am not forced to
descend from that abstract level and think
in integers, as | would have to do in BASIC.
This also makes for virtually self-explanatory
programs. Compare “IF HABITAT=3
THEN. ..” with the much more transparent
“if habitat=fields then....”

The second simple data type is the
Boolean, and is extremely useful in pro-
gramming since one is constantly control-
ling program flow with Boolean expressions.
Boolean variables take on the values true
and false. Languages without such variables
must make do with integers, which muddles
things since one’s natural expectation is for
integers to count something. The Pascal
user may simply write “if good then...”,
which is the way we think; the BASIC
programmer must write “IF GOOD = 1
THEN. ..”, which is alien to the way we
think.

A large part of Pascal’s elegance comes
from the fact that in most contexts these
simple or scalar types may be used indif-
ferently. Thus for example the type h as
defined above could be used as the index
variable in a for statement:

for habitat := ocean to mountains do

or in a case statement, or as the index type
of an array:

if foundin [fields] then

Furthermore, functions may return any
scalar type: we have already seen the func-
tion “endofgame’” which returns a Boolean
value.

Structured types: In addition to the
simple types, Pascal offers five different
structuring methods: arrays, records, sets,
files, and pointers. These different methods
may be combined in virtually limitless

ways. One may have files of arrays, pointers
to records, arrays of sets, pointers to files
of arrays of records, and so on. This extreme
flexibility of data structuring methods is
one of Pascal’s most exciting features.
The type array should be familiar, but let
us look briefly at the other four structured
types.

Sets: Each bird in my hypothetical data
bank has associated with it a set of habitats
in which the bird may be found. Having
defined the type h as above, all | need to do
to set up a variable habitats which will be a
set of different habitats is to write:

var habitats: set of h

When constructing the entry for the robin,
I will write:

habitats := [fields,suburbs]

thus assigning to the robin the set of habitats
containing the two elements fields and
suburbs. When going on a trip to the moun-
tains, | can test whether mountains are in a
given bird’s set of habitats by the following
simple test:

if mountains in habitats then

Imagine trying to do this in BASIC. Pascal
provides a variety of set operators which
allow set manipulation in all its generality.

Records: Let us imagine that each entry
in my data bank will contain the bird’s
name, its length, and a set of habitats where
it may be found. The entry cannot be an
array, since components of arrays must all
be of the same type. The appropriate data
type is the record, defined in Pascal as
follows:

type bird = record
name: string;

length: real;
habitats: set of h
end

This is a simple and logical way of grouping
data of different types into a meaningful
whole. Given variables robin and redbreast
of type bird, a simple assignment statement
will set one equal to the other:

robin := redbreast

To test whether a robin is more than 20 cm
long, we would have:

if robin.length>20 then

and so on. These are simple examples, but
they suffice to illustrate the flexibility of
the record type.

Files: Now let us suppose that | have
600 entries of type bird in my data bank,
and want to make a list of all the birds
whose length is greater than 20 cm. It is
pointless and wasteful to keep all 600
records in memory for such a task; all |

