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CHAPTER I
INTRODUCTION

1. These notes are concerned with optimal periodic control for ordinary
and functional differential equations of retarded type. In its simplest
version this problem can be stated as follows:

Consider a controlled system

X(t) = f(x(t).,u(t)), t € R,:= [0,) (1)

where x(t) € R", u(t) € R™. Look for a t-periodic control function u
and a corresponding t-periodic trajectory x such that the "average
cost"

1/t f g(x(t),u(t))dt (2)
0

is minimized (or the "average output" is maximized).
If one adds the boundary condition

x(0) = x(7), (3)

it is sufficient to consider x and u on the compact interval
T:= [0,T] only: By (3), the periodic extensions of x and u to R,

lead to an absolutely continuous solution x of (1) on R, -
Hence the optimal periodic control problem formulated above (abbreviated
as (OPC)) is intermediate between dynamic optimization problems on R,
and the following static or steady state optimization problem (0SS)

associated with (OPC):

Minimize the "instantaneous cost"

g(x,u)
where x € R" is a steady state corresponding to a constant control
ueR™ i.e. satisfies

0 = f(x,u).

In these notes we study the relation between (OPC) and (0SS). The more
complicated relation between dynamic optimization problems on R, and
periodic problems is not considered here (some results in this direc-
tion are contained in Leizarowitz [1985], Colonius/Sieveking [1987],
Colonius/Kliemann [19861]).
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The fundamental problem concerning the relation between (OPC) and (0SS)
can be formulated as follows: Suppose that (xo,uo) e R"xR™ s an
optimal solution of (the relatively simple, finite dimensional) problem
(0SS). Can the average performance be improved (in every neighborhood

of the constant functions X° = x°, w° = uo) by allowing for t-periodic
(x,u)? That is, exist T-periodic (x,u) satisfying the constraints of

(OPC) and
R (0]
1/t f g(x(t),u(t))dt < g(x%,u®) 2
(0]

If this is the case, we call (xo,uo) locally proper.

Local properness can be tested by checking if (YO,UO) satisfies neces-
sary optimality conditions for a local solution of (OPC). If (X°,u°)
violates these conditions, (xo,uo) is locally proper. This problem be-
comes mathematically interesting, since first order necessary optimality
conditions (for weak local) minima do not allow to discern steady states
which are merely optimal among steady states from those which are also
optimal among periodic solutions. We will prove various necessary opti-
mality conditions for weak and strong local minima and local relaxed
minima of (OPC) and develop corresponding tests for local properness.
Furthermore we will relate local properness to dynamic properties of

the system equation.

Other important aspects of optimal periodic control theory will not be
discussed here. For existence results of optimal periodic solutions (of
ordinary differential equations) we refer to Nistri [1983] and Gaines/
Peterson [1983]; cp. also Miller/Michel [1980]. Numerical methods for
the computation of optimal periodic solutions as well as sufficient
optimality conditions are briefly reviewed in Section IX.2, below.

Actually, we consider more general system equations than (1), namely
functional differential equation of retarded type

X(t) = f(xg,u(t)) (4)

where f: C(-r,O;R")me -R", r>0, and x, € C(-r,03;R") is given

by

t

xt(s):= x(t+s), s € [-r,0];

this includes delay equations of the form
x(t) = f(x(t),x(t-r),u(t)),

where f: R"xRMxR™ o R".

For these equations the boundary condition (3) is not adequate, since
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the "state" of (4) (or (5)) at time t 1is given by the function seg-

ment x, € C(—r,O;Rn).

t
Hence (3) has to be replaced by the (infinite dimensional) condition

X = X_. (6)

Thus we have to use the full force of optimization theory in infinite
dimensional spaces in order to treat the corresponding optimal periodic
problem.

2. Optimal periodic control theory was first motivated by problems
from chemical engineering. Sometimes "cycling" of a chemical reactor
allows to increase the average output compared to steady state opera-
tion. Here (steady state) relaxed control played as particular role,
see e.g. Horn/Bailey [1968].

Early work in the field is reviewed in Bailey [1973], see also the sur-
vey Matsubara/Nishimura/Watanabe/Onogi [1981]. Other recent work in-
cludes Watanabe/Onogi/Matsubara [1981], Watanabe/Kurimoto/Matsubara
[1984]1, Schadlich/Hoffmann/Hofmann [1983].

Besides control of chemical reactors, flight performance optimization
provides a second main source of motivation. Speyer [1973,1976] observed
that sometimes steady state cruise is not fuel optimal. This led to the
consideration of "chattering cruise" which is a (steady state) relaxed
solution (apparently, a more complete problem description avoids chat-
tering here: Houlihan/Cliff/Kelley [1982]1); see also Gilbert/Lyons
[1981], Speyer/Dannemiller/Walker [1985], Chuang/Speyer [1985], Sachs/
Christodopulou [19861].

Diverse other reported applications of optimal periodic control include
harvesting problems (Vincent/Lee/Goh [1977]1, Deklerk/Gatto [1981]; cp.
also Brauer [1984], Brauer/Soudack [1984]), soaring of gliders (e.g.
Dickmanns [1982]), vehicle cruise (Gilbert [1976]), maintenance problems
(Khandelwal/Sharma/Ray [1979]1) and dynamic pricing problems (Timonen/
Hamdaldinen [1979]).

Early contributions to the mathematical theory of optimal periodic con-
trol were given in Horn/Lin [1967], Markus [1973], Halanay [1974] and
CIME Lecture Notes edited by Marzollo [1972] (including also annotations
on the history and prehistory of optimal periodic control); see also

the surveys Guarbadassi [1976], Guarbadassi/Locatelli/Rinaldi [1974],
Noldus [1975].

Problems with discrete system equations are considered e.g. in Bittantiy
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Fronza/Guarbadassi [1974,1976], Ortlieb [1980] and Valkd/Almasy [1982].

Periodic problems with delay equations are treated in Sincic/Bailey
[1978] (motivated from chemical engineering) and in Li [1985], Li/Chow
[1987] (for linear equations see also Barbu/Precupanu [1978] and DaPrato
[1987]).

The best available survey on optimal control of functional differential
equations is still Manitius [1976] (cp. also Banks/Manitius [1974], and
Oguztoreli [1966], Warga [1972], Gabasov/Kirillova [1976,1981] and for
contributions from the engineering side, Koivo/Koivo [1978]1, Marshall
[1980], Malek-Zavarei/Jamshidi [1987]). Delay equations frequently occur
in chemical engineering models and ecological problems; cp. e.g. Manitius
[1974] for a discussion of various models.

3. These notes are structured as follows:

Chapter II collects results from general optimization theory needed in
the sequel, in particular first and second order necessary optimality
conditions for problems in Banach spaces. Although Hale's book [1977]

is used as a reference text for functional differential equations,
Chapter III includes a sketch of duality for linear time-varying func-
tional differential equations based on a calculus of structural opera-
tors. This allows to avoid excessive use of the Unsymmetric Fubini
Theorem (which is hidden now behind the properties of the structural
operators). Furthermore, extendability to the product space is discussed.
Chapter IV presents a global maximum principle for strong local minima
including a "stopping condition" for determination of the optimal period
length. The proof relies on Ekeland's Varjational Principle. Chapters

V and VI contain first and second order necessary optimality conditions
for weak local minima and local relaxed minima, respectively. A remark-
able observation here is that - under reasonable assumptions - every
ordinary optimal solution is also optimal among relaxed solutions.

The last three chapters are devoted to a discussion of local properness.
Chapter VII develops tests for local properness (in particular, a so-
called m-Test) which are based on the catalogue of necessary optimality
conditions from Chapters IV-VI. The relation between necessary optimal-
ity conditions for the periodic and the steady state problems is dis-
cussed in detail.

In Chapter VIII, we relate local properness to dynamic properties of
the system equation. We exhibit a scenario for local properness which
is related to Hopf bifurcation. An example involving a retarded Liénard
equation is worked out.
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The final Chapter IX treats problems with ordinary differential equa-
tions. In particular, a m-Test for problems with state constraints is
proved. For a simple model of a "Continuous Flow Stirred Tank Reactor"
(in Rutherford Aris' words "So sesquipedelian a style supplicates a
sobriquet": we use CSTR) it is shown how local properness occurs near
a Hopf bifurcation point.

In summary, our main results for optimal periodic control of functional

differential equations are:

- Proof of a global maximum principle based on Ekeland's

Variational Principle;

- A "stopping condition" for determination of the optimal
period length;

- First and second order necessary optimality conditions
for ordinary and relaxed problems with state and control
constraints and isoperimetric constraints;

- Tests for local properness, in particular a m-Test, based
on the necessary optimality conditions;

- A scenario for local properness related to Hopf bifurcation;

- Discussion of two examples involving retarded Liénard
equations and an ordinary differential model of a chemical

reactor;
and finally

- a m-Test for state constrained problems with ordinary
differential equations.

We hope, that these results will help to renew interest in optimal
periodic control theory. It is apparent from the literature cited above
that a first interest in mathematical questions in this field had oc-
curred at the beginning of the seventies. However, (1) there is con-
tinuing interest from chemical engineering and aerospace engineering;
other applications, e.g. in ecology, are promising, too; (2) a further
analysis of the relation between optimal periodic control and dynamic
properties appears possible; (3) the results above show that periodic
control of functional differential equations is much more well-behaved
than control with fixed boundary values (in order to make this point
clearer we have included in Chapters V and VI a discussion of fixed
boundary value problems), and (4) some of the results derived here for
retarded functional differential equations remain true for other in-



finite dimensional, in particular parabolic differential equations
(cp. Colonius [1987]1).

4. This research report is a revised version of my Habilitationschrift,
Universitdt Bremen, Bremen 1986. The main revisions are (i) a sharpened
and more general version of the second order necessary conditions 1in
Section II.2 made possible by using some ideas from Werner [1984],

(i1) a new proof of a stopping condition for determination of the op-
timal period length based on Ekeland's Variational Principle, now in
Section IV.2; in this chapter, extendability to the product space is

now assumed; (iii) a corrected version of a TM-Test under state con-
straints in section IX.3.

The research reported here was performed during visits to Mathematisches
Institut der Universitdt Graz (1983/84) and, as Visiting Assistant
Professor, at Lefschetz Center for Dynamical Systems, Brown University,
Providence, R.I. (1984/85). These visits were supported by a grant from
Deutsche Forschungsgemeinschaft. It is a pleasure to thank Prof. F.
Kappel, Universitdt Graz, and Prof. H.T. Banks, Brown University, for
their invitations. Furthermore an invitation by the late Prof. G.S.S.
Ludford, Cornell University, to take part in the Special Year on Re-
acting Flows was very helpful for an understanding of the CSTR problem.
Prof. Matsubara, Nagoya University, draw my attention to the interesting
problem of a mM-Test under state constraints.

I am indebted to A.W. Manitius and D. Salamon for the permission to use
some unpublished material in Chapter III. Furthermore, D. Hinrichsen
and M. Brokate pointed out errors in the earlier version. Finally, I
thank V. Landau, who typed the earlier version, and E. Sieber for their

competent work.

5. Some remarks on the notation are in order: Standing hypotheses in
a section or chapter are only repeated in statements of theorems. The
end of a proof is marked by o.

For a set Q 1in a vector space we define the conical hull of Q with
respect to qO € Q as

Q(q%):= fa(g-9°): «a 2 0, q € Q3.

The norm in a Banach space X 1is denoted by I-IX ; where no confusion
appears possible, we omit the index X. Furthermore, for p > 0, we
let

Xp:= {x € X: Ix| < p}.
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The space of linear functionals on X is denoted by X', while X*
denotes the dual Banach space of bounded linear functionals on X.

The dual of the space C(a,b;Rn) of continuous function on [a,b] with
values in R"™ s identified with the space NBV(a,b;Rn) of normalized
functions v of bounded variation, i.e. v is left continuous on (a,b)
and v(b) = 0. Derivatives are denoted in various ways, as it appears
most convenient in the respective context. Furthermore R, := [0, ).



CHAPTER II
OPTIMIZATION THEORY

This chapter collects results from general optimization theory. For most
of them proofs are available in books and hence omitted here. However,
complete proofs for the second order necessary conditions in section 2
are included, since the specific results we need were not available in
sufficient generality. Furthermore, second order conditions play a cen-
tral role in optimal periodic control theory; hence completeness in the
arguments appears adequate.

After the exposition of first and second order necessary optimality con-
ditions in sections 1 and 2, section 3 indicates a result by A.V. Fiacco
on smooth dependence of optimal solutions on a parameter and cites I.
Ekeland's Variational Principle.

The main results of this chapter are Theorem 1.11, Corollary 2.12 and
Corollary 3.7.

1. First Order Optimality Conditions

In this section we consider the following optimization problem in Banach
spaces.

Problem 1.1 Minimize G(x)
s.t. F(x) € K, x € C.

where G: X - R, F: X > Y, X,Y are Banach spaces, the set C < X is
closed and convex, and K< Y is a closed and convex cone with vertex
at the origin.

For a set Q in a Banach space X define the conical hull Q(qo) of
Q with respect to q° € Q by
Q(qo): = {a(q-qo): a 20, g€ Q}.
Observe that for a convex cone K with vertex at the origin and yo € K
K(yo) = {k-ayoz a >0, k € K}.

Frequently, we abbreviate
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Qu: = QN X, o> 0.

P
The following two theorems, a generalized open mapping theorem and first
order necessary optimality conditions, go back to work by S.M. Robinson
[1976] (cp. also Zowe/Kurcyusz [1979], A1t [1979]). A nice, self-contained
treatment is given in the lecture notes by Werner [1984].

Theorem 1.2 Let X and Y be Banach spaces and T: X - Y be a bounded
lTinear map. Suppose that Q is a closed and convex set in X and K
is a closed and convex cone with vertex at the origin in Y. Then for

q0 € Q and yo € K the following two statements are equivalent:

(i) Y = T1Q(a°%) - K(y°)

(i) Yp c T(Q—qo)l - K(yo)1 for some p > 0.
Proof: See Werner [1984, Theorem 5.2.3].

One obtains immediately the following corollary, Werner [1984, Corol-
lary 5.2.47].

Corollary 1.3 Suppose the hypothesesof Theorem 1.2 are satisfied. Let

Pyt = supfe > 0: Yp = T(Q—qo)1 - K(yo)l}.

Then for L > l/p0 and y € Y there exist

i v

with y = Tx + z.
K(y®),

Theorem 1.4 Let x° be a local minimum of Problem 1.1 and assume that

the functional G is Fréchet differentiable at x° and the map F s

continuously Fréchet differentiable at x°. If the constraint qualifi-
cation
1,0 0 0
F'(x )C(x") - K(F(x")) =Y (1.1)

holds, then there exists y* € Y* satisfying

(i) y*y 2 0 for all y € K

(i1) y*F(x%) = 0

(ii1) [AOG'(XO) - y*F'(xo)]x >0 for all x € C(xo).

Proof: See Werner [1984, Theorem 5.3.2].
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Remark 1.5 It suffices, naturally, that F and G are defined in a
neighborhood (¢ of x°. This, being true for all following necessary
optimality conditions, is very convenient if F and G are implicitly

defined only.
The following corollary slightly extends the result above.

Define, for x € X, A = (lo,y*) € RxY*, the Lagrangean functional

L{x,A): = AOG(X) - Yy*F(x). (1.2)

Corollary 1.6 Let the assumptions of Theorem 1.4 be satisfied and as-
sume that either F'(xO)C(xo) - K(F(xo)) is not dense in Y or con-
tains a subspace of finite codimension in Y. Then there exists

0 # A = (Ao,y*) € RxY* satisfying

(1) Ao, 20, y*y 20 for all y €K

(ii)  y*F(x°) =0

(iii) DL(x®,A)x 2 0 for all x € C(x°).

If the constraint qualification (1.1) is satisfied, then Ay F 0.
If (1.1) is supplemented by

CLIRF(x%) + F'(x%)Ny + N1 = Y, (1.3)
where

Ny = [-K(F(x®))] n K(F(x°))
and

Ny = [-C(x°)1 n c(x%)

are the greatest Tinear subspaces contained in K(F(xo)) and C(xo),
respectively, then, for given Ays the conditions (i) - (iii) above
determine y* uniquely.

Proof: If (1.1) holds, the assertion follows by Theorem 1.4. If
F'(xo)C(xo) - K(F(xo)) is not dense in Y, the assertion follows by
the Hahn-Banach Theorem (e.g. Klee [1969, 1.3]). Thus it remains to
discuss the case where F'(xo)C(xo) - K(F(x%)) contains a subspace N
of finite codimension in Y. By a version of the Hahn-Banach Theorem
(cp. e.g. Kirsch/Warth/Werner [1978, Satz 1.1.14]1) there is y' € Y'
with y'y 20 for all y € K and

y'F'(xo)x >0 for all x € C(xo).

Let M be the Tinear span of B: = F'(xO)C(xo) - K(F(xo)). The sub-
spaces M and N are closed in Y and the factor space M/N s
finite dimensional. We denote by mn: M - M/N the canonical (linear and
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bounded) projection. Thus
ny; = Ty, 1 y17Y, € N.

If M is a proper subspace of Y, there exists y* € Y* satisfying
the assertions with AO = 0. Thus we may assume M = Y. Observe that
nB is a convex subset of a finite dimensional space. Thus if 0 1is a
boundary point of B, there exists a bounded Tlinear functional y on
M/N  with

ynF' (x%)x < 0 for all x € C(x?%)
yny > 0 for all y € K
ynF(x%) = 0.

Hence the functional ym € Y* satisfies the assertions with Ao = 0.
Now suppose that 0 € int B. Then

Y = M= P (x%)C(x%) - K(F(x°))

and hence (1.1) holds.
Finally, let (1.3) be satisfied and suppose yi,yz € Y* satisfy

(i) - (iii) with Ao = 0. Then

(YI'yE)[uF(XO) + F'(xo)x +yl =0 forall a€R, x €Ny, yE€ NY

*x _ %
and by (1.3) yi = ¥3- i

Remark 1.7 Zowe/Kurcyusz [1979], Kurcyusz [1973,1976], Penot [1982],
and Brokate [1980] contain more information on condition (1.1), see also
Theorem 1.18, below. Condition (1.3) is very restrictive if other than
equality constraints are present. Hence, in this case, one has - in
general - to Tive with non unique Lagrange multipliers (see also Lempio/
Zowe [1982]).

In the following problem, the cone constraint has a special structure
which can be exploited.

Problem 1.8 Minimize G(x)
L 8 F(x) = 0, H(x) € K, x € C,

where G: X - R, F: X ->Y, H: X->2Z, X,Y and Z are Banach spaces,
C is aclosed and convex subset of X, and K 1is a closed and convex
cone in Z with vertex at the origin and non-empty interzor.

Note that Problem 1.8 is a special case 6f Problem 1.1 (with cone
{0} xK = YxZ). Frequently we will refer to the constraints F(x) =0
and H(x) € K as the equality and the inequality constraint, respec-



