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ABSTRACT. This collection includes papers devoted to the approximation of functions by poly-
nomials and splines. The behavior of upper bounds on the deviation of classes of differentiable
functions from their Fourier sums is studied, as well as the deviation from the partial Fourier sums
in orthogonal polynomials. The problem of reconstructing functions on the basis of incomplete in-
formation is considered, and approximation of differentiable functions by splines with fixed as well
as variable knots is investigated in weighted L_-spaces. The problem of approximating an un-
bounded operator by bounded ones also receives attention. Finally, a solution (uniform relative to
the order of differentiation) of the problem of the norm of the derivatives of a polynomial in the
L-metric is given, and extremal properties of polynomials are studied.

Editor’s note. In order to economize on production costs, displayed formulas in this
translation are photographically reproduced from the Russian original. In addition to the
intrinsic appearance of the formulas themselves, this means that symbols implemented in
the text are not always exact replicas of their counterparts in displays.
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APPROXIMATION OF OPERATORS OF CONVOLUTION

TYPE BY BOUNDED LINEAR OPERATORS
UDC517.5

V. V. ARESTOV

ABSTRACT. In this article, the quantity

E(H,N)= }nf
17, <

is investigated for linear (unbounded) operators 4 and B in the spaces L, = L (R™). Let §
be the set of infinitely differentiable, rapidly decreasing functions, W, ,(B) the Banach space
of functions with norm ||x|| = ||x||, + ||Bx||,, W,,(B) the closure of S in W, ,(B), and
II(r, s) the space of multipliers from L, to L,. Introduce the norm |x||,, = sup{(0, x):
8 €II(r, s), [|0]| < 1} in S. It is shown that if 4 and B are translation invariant operators,
AS C S, BS C S, and BS is dense in L,, then

sup | Ax— Tx|!
y TEM IBxip <) !

E (. p(R), N)= (Ax (0) — (8, x)).

inf sup
8CM(r, ), (180 N £€S. || Bx|lp,¢<!

If S is dense in W, ,(B) then in this relation ii’,‘,(B) can be replaced by W,,(B). As an
example, the quantity E(W,,(B), N) is calculated, and the extremal operator is determined
when 4 = d*/dt* and B = d"/dt", where 0 <k <n,n>3, 1 <r=s< o, p=g=2
and m = 1.

Bibliography: 17 titles.

L.Let L = L (R™),m > 1,1 <y < oo, be the space of functions x measurable
on R™ with finite norm

lIle1=L§mlr(t) rdt"",

for y < o0, and the space C, of functions continuous on R™ and having zero limit
when |7| - oo for y = o0. Denote by £ the set of bounded linear operators T from
L, to L,, and by £2(N) the set of operators T € £] with | T|| < N. Let Z be the set
of functions measurable and locally summable on R™, and let A and B be linear
operators from £ to £ with a common domain %. Put Q = Q?(B) = {x € 9 N
L,: || Bx||, < 1}. The quantity

U(T) = sup ||Ax — Tx||,, T € £, (1.1)
xEQ
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2 V. V. ARESTOV

is the deviation of the operator 7" from the operator 4 on the class Q, in the metric
of L,. The question of properties, and especially estimates, of U(T) arises in many
problems.

This paper is concerned with a problem of S. B. Steckin [1] about the best
approximation of the operator 4 on Q by (bounded linear) operators of the class
£5(N), i.e. with investigation of the quantity

E(N)= E(N; A,B;r,s;p,q) = inf U(T). 2
(V) = E( rsipg)= inf U(T) (12)

This problem was considered by S. B. Steckin, Ju. N. Subbotin, L. V. Taikov, V.
N. Gabusin, V. N. Strahov, Jaak Peetre and others (see [1]-[6] and the references
cited there). It is known that (1.2) is connected with other extremal problems. For
example, for ¢ = s the quantity E(N) gives an upper estimate for the modulus of
continuity of A4 on the class Q; if A and B are differential operators on the real line
then the best constant in inequalities between norms of functions and their
derivatives can be estimated from above by E(N) [1].

In this paper problem (1.2) is considered for operators 4 and B invariant under
translation, which are close to differential operators with constant coefficients. It is
shown that (under certain supplementary conditions) (1.2) leads to the problem of
approximation of functionals in the space of smooth functions where the norm is
induced by the class of multipliers from L, to L,. In case of differential operators
on the line this allows us to express E(N) by the best constants in inequalities
between norms of derivatives of functions, in the spaces considered.

For h € R™, define in £ the translation operator 7, and a similar operator o, by
the formulas (7,x)(¢) = x(¢+ — h) and (0,x)(f) = x(h — {). We assume that the
operators 4 and B on 9 are invariant with respect to translation, i.e. 7, = 9
and At, = 1,4, Br, = 7,B on ) for arbitrary h € R™. Denote by T} the set of
operators T € £] invariant with respect to translation on L, and let T(N) = T
N E5(N). In[6] it is proved that under these assumptions

E(N) = Telg’;f(N) u(T). (1.3)
Some properties of the quantity (1.3) are also observed in [6]. Similar problems are
considered in [7] for the periodic case. For s < r or ¢ < p, problem (1.3) degener-
-ates; namely, (cf. [6]) if s < r then E(N) = E(0), and when g < p the condition
E(N) < oo implies E(N) = 0. Therefore in what follows we assume that s > r and
q2p.

Let S be the space of rapidly decreasing, infinitely differentiable functions on
R™, and S’ the corresponding dual space of generalized functions (see, for
example, [8]-[10]). The value of the functional # € S’ for the function x € § will
be denoted by (4, x). The Fourier transform X of the function x € S (or even
x € L)) is defined by

Z()= Sz () e=2=i <% s

here and in what follows in integrals taken over R™ the domain of integration will
not be indicated. The inverse Fourier transform is determined by

#(t)== Sz (n) €25 O,
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The Fourier transform of a functional # € S’ is again a functional § € S’ for
which (9, x) = (0, %). 1f 0 € L, 1 <y <2, then§ € L, where 1/y + 1/y' = 1.
The function y(¢) = (0, o,x) will be called the convolution 8 * x of the elements
0 € S’ and x € S; when 0 is an ordinary function we have

@+2) ()= {0 (n)z(t —n)dn.

For # € S’ we denote by # the functional determined by the formula (8, x) =
(0, 0gx) = (8, x(-1)), x € S.
Let b € X'. Define the operator B on S and formally the adjoint operator B* by
Bz =b»z, B'z=0bxz, zE€S.

Prescribe the condition

BScCS (1.4)

on b, i.e. b * x € S forall x € S; then obviously B*S C S. Now we extend B to a
wider set according to the scheme of Sobolev. Denote by = = Z(R™) the set of
those measurable, locally integrable functions x for which there exists a number
M = M(x) with the property

flz@ 1@+ 1eP>d <co.

Clearly, = C S’. For the pair of functions x, y € £ we assume that x belongs to
the domain ) (B) of B, and y = Bx provided

[zB%dt=ypdt Vees.
Define the sets
W,=W,(B)={z€%Z (B): Bz€L,),
W, =W, ,(B)={z€L,ND (B): BzEL,).

Using (1.4) and the fact that the spaces L, and L, are complete, we can easily see
that W, ,(B) is a Banach space with respect to the norm

ﬂzﬂ=lI2ﬂ.v,,,(a) =|z| +| Bz|,.

Let a be another element of S’ with the property a * s € S for x € S. In the same
way, we define the operator 4 with domain 9 (4).
Set
onr,p(B):" {zewr.p('B):lenp< 1}’

For W, ,(B) C 6D (A), we define U(T) for an operator T' € £ by
U(T)= sup |4z —Tz|,

2€Qy, p(B)
and for W, ,(B) ¢ D(4) we take U(T) = co. Finally, let
E(N)= E(N; A,B;r,s;p,q) = inf U(T). (1.5)

TEE(N)

In the sequel, this quantity will be investigated. The operators 4 and B are
invariant under translation; hence relation (1.3) holds for problem (1.5).
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It is known (see, for example, [8] or [10]) that if s <r and T € ¥} then T =0,
and if s > r then for S’ the operator T € ¥ is of convolution type with element
0=0,€ 8"

Tz=06xz, zE€S. (1.6)
The set II(r, s) = {07 T € J7} is a Banach space with norm |||y, = | T”ll-’.'

Choose p so that 1/p=1—(1/r—1/s); 1 <r <s < oo implies 1 < p < 0.

For § € L, and x € L, the inequality
10ez], <c(r, 9)l0k1zL
holds [11], where

c(r,)=44,4,<1, A=(m")" 1x4+1y=1

Hence

Ll s), %:1 — (%_.%) (1.7)

and if § € L, then

“6"H(7,1)<c(r0 3)"9“,- (1'8)

Denote by g, that function for which g () = (1 + 47%|f)™/% a > 0. It is
known (see, for example, [12], Chapter V, §3) that g, € L,(R™) and g, (¢) =
O(e~ !y as |t| > oo for some ¢ > 0. For sufficiently large a we also have g, € L ;
for example, if « > m then g, € L, N C,. Define the convolution operator G, on §
by G, x(t) = (1 + 4=*|t|)*/%%(f). We have G,S c Sand x = g, * G,x, x € S. We
show that if # € S’ and x € S, then

®, )= [e.(m) O, uG.2)dr, z€S. (1.9)
It suffices to prove that for an arbitrary function ¢ € § the relation
gqp(h) (0, <,z)dt == Scp(u)Sg,(h-——u) ®, ©,G.z) dhdu (1.10)

holds. Putting y = G_x, we obtain (see, for example, [8], Theorem 3.13, or [9],
Theorem 7.19)

(9 (@), (6, le))——'—(o' prz)=(8, Peg,*Y)

=(p+8, 0+9)= o) [g.(h—u) (0+7) (k) dhdu,
which verifies (1.10).
Define the functional » = »,; on S by

v(z)= sup (9, 2). (1.11)
ll'ﬂn(r,.) <l

(1.9) yields

V(I)<Hg.ﬂ‘,“G.ZL. (1'12)
Using (1.7) and (1.8), we get the estimate
Izl <c(r s)v(@), 1y=1r—1s.
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Now it is easy to see that » is a norm on S; in what follows we will denote it by
| Il ;- Thus the last inequality takes the form

Iz}, <c(r. 9)lzl, z€S, 1y=1r—1js. (1.13)

The norm || x|, ., x € S, is defined the same way.
For 8 € II(r, s) set

j@)= . {(@, z)— (8, 2)} (1.14)

and introduce

x(M=inf  j(0). (1.15)

100 (r, 0)<¥

We will show below that (under certain additional conditions with respect to the
operator B) the quantities (1.5) and (1.15) are the same.

Let us list some well-known properties of the space II(r, s) and, as a conse-
quence, of the norm », ;. It is known (see, for example, [8] or [10]) that ,

I (r, s)=TI(s, r') and ﬂeln('..)=||eﬂu(',. ) 0cII(r, s). (1.16)
Therefore

IzL..=lzl.,,.. zES. (1.17)

Moreover, by the Riesz-Thorin interpolation theorem and (1.16) we have the
embedding (see [10])

I (r, s)C I (a, B), %:"‘ - %—_-‘7‘.{.%, 0<t<1,

r

and |10 ||y, p) < 10 1Ir1¢r.5)- This implies
lz)..<Ilzl.»» =zE€S. (1.18)

In particular, if p is between r and 7’ then
Izl ., <lzl, , z€S. (1.19)
The structure of the space I1(2, 2) and II(r, o) is known [8], [10]; namely,
22,2)=L,={6:0 €L},
I(r, ©) = L, for 1 < r < oo, II(o0, 0) = V, (1.20)

where V is the space of Borel measures on R™. Hence

nzﬂr,u::"znl,r':Izl" 1<r<oo,

llzlh,1=llxﬂm.m=zﬂm

lzh,a=1£]- (1.21)
(1.19) and (1.21) yield

1zl =12k, 0o <2k,  <lzh,=[Zh, zE€S. (1.22)
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Finally, we mention the inequality
lz*yl, . <lyl-lzl, = y€S, (1.23)
which easily follows from (1.11) and the definition of the class II(r, s).

2.Let H C W,,(B), and denote

u(H, 0) = sup lAx — 8 = x||,, 8 € II(r, 5),
xEHNQ,,(B)

UH,T)= sup |Ax— Tx||, T € £, (2.1)
xEH N Q,,(B)

E(H,N)= inf U(H,T).
ITII<N
If H is invariant with respect to translation, then by (1.3) and (1.6)

E(H, N)= inf u(H,0). 2

nog<s~
In particular, when H = S, u(S, ) will be denoted by u(8).

LEMMA 2.1. If the set Y = BS is dense in L, and u(8) < oo for the functional
8 € Il(r, s), then the representation

Az=0xz+} fxBz 2.3)
holds on S, where

=€, q), [flypq=2() (2.4)

ProoF. By Lemma 2.1 of [6] we have the representation

Ar — 02z —=FBzx

on S, where F is a bounded linear operator from Y (with_l7, norm) to L,
|F|l% = u(@), and F is invariant under translation. Since Y = L, F can be
continuously extended to all of L,. Moreover, F € J7, and consequently there is
an element f € II(p, q) such that

Fy=f»y, yeES,
1P B =P i =1flygp g =2 (0)-
Thus Lemma 2.1 is proved.
Denoteby W, , =W, p(B) the closure of S with respect to norm of W, p(B). Clearly

SC Wr,p(B) CWr,p(B)'

LEMMA 2.2. If BS is dense in L, and there exists a functional § € I1(r, s) such that
«u(8) < oo, then

W, ,(B)CD(4), AW,  (B)CL,+L, (2.5)
u(W, ,(B), 0)=u(f). (2.6

Moreover, the representation (2.3) with property (2.4) holds on W, ,(B).
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PrOOF. By Lemma 2.1, we have the representation (2.3) on S. Let t € R™ and
¢ € S. Substituting the function o,¢ in (2.3), we obtain

Ap=0x94f+B'9, 9ES. @7
Let x € W,p and
g=09xz4 f*Bz. (2.8)

Then g € L, + L,. We show that g = Ax, i.e.
(8, 9)=(z, 4%), <ES. (2.9)

Choose a sequence of functions x, € S which converges to x in W, ,. Then we may
assert that

(& 9)=1lim (3, 02,) + (. + Bzy) =lim (2, D29)+- (2, 2 B'9))-
Using (2.7) and AS C S, we get
(& 9)= li_l::) (zm A'?) == (2:, A'? .

Thus (2.9) is proved, and hence (2.3)-(2.5) follow. S C W, ,(B) implies u(f) <
u(W,,, 8). On the other hand, the representation (2.3)-(2.4) yields the opposite
inequality. The proof of the lemma is complete.

LemMa 2.3. If BS= L, then
u@®=7@ VOEI(r,s). (2.10)

PROOF. Assume u(f) < oo. Then by Lemma 2.1 we have (@ — 8, x) = (f, Bx),
x € 8, and j(0) < || flinep.g = 1fllng.q = #(8). Suppose now () < oo, and let

z€S, 9€S, |el, <1, [bez], <1

Put y =@ xx. We have b+y =@+ b+x, and, by (1.23), [|b=*y|,, <
ll@ll llo * x|, < 1. Therefore |(p, (@ — ) * x)| = |(@ — 8, y)| < j(f). Hence
(@a—0)*x € L, and |(a — 8) = x||, < j(@). Consequently u(d) < j(#). Thus if
one of the quantities %(8) or j(#) is finite then so is the other, and they are equal.
The lemma is proved.

THEOREM 2.1. If AS C S, BS C S and the set BS is dense in L,, then
EW, ,(B), N)=E(S, N)=x(N). @.11)
Proor. Evidently, E(S, N) < E( W, »» N). The sets S and W,J, are invariant
under translation; therefore we may use (2.2). Applying (2.2) and Lemma 2.2, we
get the first relation in (2.11). The second one follows by Lemma 2.3.
In general, the set S is not dense in L,. Let, say, B = A+ I, where A is the

Laplace operator and / is the identity operator. For this operator the homogeneous
equation B*z = Bz = 0 has the solution

z2(8) = |¢|'="/28,,/,_(|1]), (2.12)
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where §, is the Bessel function. It is easy to show that z € L, provided that
y >2m/(m — 1) = y,. Consequently BS is not dense in L, for p <yp=
2m/(m + 1).

We may state the following sufficient condition for the density of BS in L,:

IfbeCc®nz, b is different from zero a.e. and 2 < p < oo, then BS C S and
BS is dense in L,.

Indeed, the embedding BS C S is obvious. Assume that BS is not dense in L,.
This is equivalent to the following: there exists a functional g € L}, g = 0, such
that

(g, Bp)=0 V9€S; (2.13)

since 2 < p < o, £ is an ordinary function from L,. Moreover, (2.13) implies
g1§ = O a.e.; hence g = 0 a.e. Consequently g = 0.

In connection with Theorem 2.1, the question of coincidence of the quantities
k(N) and E(W,,(B), N) arises. For this it is sufficient to have the relation

W, ,(B)=W, ,(B), (2.14)

i.e. the density of S in W, ,(B). In general, the set S is not dense in W, ,(B). As an
example, take an operator B with the following properties: the characteristic
function g of B belongs to L, 1/y=1—(1/p —1/r), and the homogeneous
equation Bz = 0 has a solution z € L, different from zero. Then we have x =
g * Bx for x € S, and hence the inequality

1zl <leklBzl, (2.15)

holds on §, and consequently on W, ,(B) as well. Clearly z € W, ,(B), while (2.15)
does not hold for z and therefore z & W, ,(B), i.e. (2.14) does not hold. The
differential operator B = A(A + I) with
SmL AoismEL st

has the properties required above. For this operator the homogeneous equation is
satisfied by the function (2.12); the characteristic function can also be easily
written in an explicit form. In this way, if the parameters satisfy condition (2.16)
then § is not dense in W, ,(B). The following sufficient conditions can be stated for
(2.14):

1. If p > r, then (2.14) holds.

Indeed, let x € W, ,(B) and ¢, n € S. Then

Iz — e[z —zxa]+[(z —9)* 1), @17
Iz —e)enl<lz—e¢l Unh+1B2L)

where 1/y =1— (1/r — 1/p) and |z|| = |||l 5,8 = llzll, + [|Bz||,. The first two

terms on the right of (2.17) can be made arbitrarily small by a properly chosen 7
and ¢, respectively. Consequently, x € § = W, ,(B).
2. If p < r and B is such that

irelg("m—-x*Bn[L—{-ﬂy—y*Bn[IP)=O VzgL, yeL, (213
n

then (2.14) holds.
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Indeed, let x € W, ,(B) and ¢, 1 € S. Then
lz—e*nl<lz—z*Bn|+|zsBr—oxq]

But since x * By = Bx = n we get
llx * Bn — @*ql = [|(Bx — @) *nll = [(Bx — @) * ||, + [|(Bx — @) * Bn||,
< [|Bx — @ll,(Inlls + IBnlly),

where 1/6 =1— (1/p — 1/r). Now take an &€ > 0. Using (2.18) for the pair of
functions x and y = Bx, we can choose an 7 such that |[x — x * By| <e/2.
Furthermore, take a ¢ satisfying the condition ||Bx — o|[,(/[nlls + [ Bnll,) <e/2.
Then we will have ||x — @ * 1|| <&, and hence x € S.

3. If the operator B has the property

h€C, B'h=0=h=0, 2.19)

then, for r > p > 1, (2.18), and hence (2.14), holds.

Indeed, denote by X = (L,, L,) the Cartesian product of the spaces L, and L,
with norm ||(x, »)I| = |Ix|l, + lI¥ll,, (x,») € X. Let (x,y) €EX and Y =
{(x * Bn,y * By),n € S}. Evidently, Y is a linear subspace in X. Condition (2.18)
means that (x, y) belongs to the closure Y of Y in X.By the Hahn-Banach theorem,
for this it is sufficient (and necessary) that for all functionals g € X* the condition
g(Y) = 0 imply g(x, y) = 0. If g € X*, then g = (g,, 8,), where g, € L?, g, € L}
and g(& ) = (g1, § + (82 ), (¢ §) € X. The condition g(Y) = 0 can be written
in the form

(81, z#Bm)+ (g3, y*B7)=0 VqES. (2.20)

Set h = g, * x + g, * y. (2.20) means that B*h = 0. Moreover, r > p > 1 implies
h € C,. Thus, by (2.19), 2 = 0. In particular, A(0) = (g, x) + (g8, ) = 8(x,») =
0.

4. If BS is dense in L,, then clearly (2.18), and hence (2.14), holds.

It is easy to see tht the density of BS in L, means

hE€C, Bh=0=h=0. 2.21)

5.1f 1/p — 1/r < 1/m, and B is a differential operator with constant coefficients,
then S is dense in W, ,(B).

It suffices to show this for » > p. Let x € W, (B). If y € S, theny =y +x €
L, N Cg°, and, by a proper choice of ¢, ||[x — y|| can be made arbitrarily small.
Now denote by 1 a function of one variable with the properties n € S, n(r) = 0 for
|7] > 2 and n(7) = 1 for |r| < 1. For A > 0 define the function ¢, on R™ by

@u(t) = n(hty) - - - n(ht,), t =(t},...,1,) € R™. Let y, = yg,; then evidently y,
€ S. We show that ||y — y,|| = 0 for & — 0. Clearly
ly—ul+1(1—9)Byl,-0, k—0. (2.22)

Further, for the function By, = Byg, we have the representation

By, = ¢,By+i<|2|<x D9,By, (2.23)
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where B, are certain differential operators and M is the order of the operator B.
Let Qh) ={t=(t,...,4,) ER™ 1<h|4| <2 k=1,...,m). If t & Q(h),
then D", (¢) = O for |»| > 1. Therefore by Hélder’s inequality we obtain

1DexByl, <ID’eu b1 B,Y Iz c200))

where y = 7p/(p — r). Moreover, | D’g, ||, = A"="/Y||D%,||,. But if 1/p — 1/r
< 1/m and |»| > 1, then |»| — m/y > 0 and hence ||D "ouBy|l, >0 as h—0.
Now (2.22) and (2.23) imply ||y — y,|| >0as A — 0. Thus x € S.

Note that in fact we have proved that if at least one of the above conditions 1-5
holds, then the set K of compactly supported functions from S is dense in W, »(B)

- COROLLARY 2.1. If AS C S, BS C S, BS is dense in L, and at least one of the
above conditions 1-5 holds, then

EW,, ,(B), N)=E (S, N)=x(N). (2.24)

For § > 0 we define the class
SE=5821@)=(z€S:|z|,,<3, | Bz|,, , <1}

and let
A®)= sup Az (0)= A
()= zesg) z(0)= s;;g)] z e, (2.25)
A = A (0) — — —
(N) §up{ (8) — N3} ,es'?gtp B {1 Azfe Nizl, ). 26

Applying Lemma 1 of V. N. Gabusin [3] to the (functional) problem (1.15), we
obtain

x(N)=A(N). 2.27)
Hence it follows that if the conditions of Theorem 2.1 hold, then
EW,, ,(B), N)=A(N); (2.28)
furthermore, if at least one of the conditions 1-5 holds as well, then

EW,, ,(B), Ny=A(N), (2.29)

3. In this section we make the previous results more exact for the operators
A = d*/dt* and B = d"/dt" (0 < k < n) in the spaces L, = L (-0, o0) on the
real line (m = 1). In this case the set D (B) = 9, consists of functions x € = such
that x®~ D is locally absolutely continuous and x™ € =. Let

mn'-:{zELrn@.:szL,}- (31)

In this case

E(N)= inf sup [z2® —Tz[, 3.2
ITizr<n *€77,
’("I'\l
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x (V)= inf *® (0) — (6
(V) uouu::.)SNsea.uf}:?n,,,sl {z® (0) — (8, =)},
)\ 8 et k) —_— (k)
®= 25, =" O= g 1=k
S@)={(z€S:l=L,,<3 |27}, , < 1)
AN)= Ssgpo {(A@3)— N3} = sup (1z®k—NlzL,.)- (33)

z€8, [z(8)[p, (<1

As before, we assume here that s > r and ¢ > p.

THEOREM 3.1. Let s > r and q > p, and let

1 i . 1
Then
K=2\(1)< o, (3.5)
_ _ n—k+1/g—1/p
A (3) = K7, a_n-i—i/q—i/p-i-i/r—i/:‘ 3.6)

If, in addition,p > 1 and s > r for k = 0, then
E(N)=x(N)=A(N)=B«"K'*NF, B=1—a. G.7

PRrOOF. It is easy to construct compactly supported functions 8, f € L_ such
that in &, the representation x® =0 * x + f+ x™ holds (see [13]). Hence
k(10 lliz¢r.5p) < IIfllrxcp,qp @nd consequently there is an N such that x(N) < oo.
Clearly A(8) < N& + «(N) for arbitrary N and é. In particular, we have (3.5).

Now we prove (3.6). Let 8 € II(r, s), h > 0 and 6, a functional defined by
(8, x) = (0, x;), where x,(¢) = x(ht), x € S. It is easily seen that 8, € II(r, s),
16,1l = A'/*=1/7||8| and the correspondence # — 6, is a one-to-one mapping of
TI(r, 5) into itself. Hence if x € S, then x, € S and ||x,]|,, = A'*~""||x||,,. Let
x € S,c>0and A > 0. Then

lezsly, , =A™zl czf?) (0)=ch™z™ (0),

leafol,, =B |2, . 38

(3.4) and (3.8) imply that the parameters ¢ and 4 can be chosen such that
chielr—3  cp*IeNE g, (3.9)

moreover

R =3, (3.10)

where a is defined by (3.6). If ¢ and h satisfy (3.9), then the correspondence
x — cx,, is a one-to-one mapping of S(1) into S(§). This and (3.10) yield (3.6).

If ¢ € Cy and ¢™ = 0, then evidently ¢ = 0. Therefore the operator d"/d:"
satisfies (2.19). By (2.24) and (2.27) (for p > 1) we have E(N) = k(N) = A(N).
Substituting the value of A(8) in (3.6) into (2.26), we obtain (3.7). Q.E.D.



