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The lecture notes contained in this volume appear with the kind
permission of the lecturers. The notes are based directly on the
lectures and are intended to be informal presentations, not formal
monographs. The lecturers have been cooperative in checking over
the work of the notetakers, but have not undertaken significant re-
vision or expansion, so that the responsibility for errors or for
misplaced emphasis lies with the notetakers.

Notes based on the lectures of Professor Roy Glauber (statistical
physics) and of Professor Max Krook (plasma physics), originally
planned for this volume, will appear in the next volume of Brandeis
Summer Institute Lecture Notes, scheduled for publication in the fall
of 1962,

Mr. A. C. Manoharan has supervised the preparation of this volume
for publication. )

The Institute was supported by the National Science Foundation.
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L INTRODUCTION

Since the subject of polarization phenomena is rather wide , We
shall have to be very selective in such a short series of lectures.
We shall mainly be concerned with polarization phenoniena
associated with the emission and absorption of radiation in parity
conserving and non-conserving interactions. We shall primarily
be interested in cases where the energy of the radiation involved is
low so that its wavelength is much greater than the dimensions of
the radiating system. The retardation expansion is therefore
meaningful and the fields of the emitted radiation often carry off the
minimum angular momentum consistent with the conservation laws.
These transitions usually take place between states of well defined
angular momentum and parity and the radiation itself always carries
off a well defined angular momentum and parity, even though the
interaction itself may or may not conserve parity. For the parity
conserving situation our remarks will apply chiefly to the emission
of photons, for the parity non-conserving situation, our remarks
will be applied to beta decay.

The techniques we shall be using were developed mainly by
Wigner and Racah, and are of sufficient generality so that they can
be used in elementary particle physics, nuclear structure and in -
the many body problem.

General References:

1. M.E. Rose: Elementary Theory of Angular Momentum
(referred to as ETAM).

2. Rotenberg et. al: 3j and 6jSymbols.
3. Edmonds: Angular Momentum and Quantum Mechanics.

4. Gelfand and Sapiro:American Mathematical Society Translations,
Series 2, Vol. 3, 207.

5. U. Fano: National Bureau of Standards Report.1214.
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2. GENERAL DEFINITION AND PROPERTIES OF ANGULAR
MOMENTUM OPERATORS

2-1 Definition of Angular Momentum Operators

Consider a point ¥ in real 3-dimensional Euclidean space which
undergoes a transformation to¥' under a rotation R of the coordinate
system.

X =R¥% (2. 1)

R is a 3 x 3 real orthogonal matrix. The set of matrices R
constitute a group under ordinary matrix multiplication, the three
dimensional rotation group R3. This group is a 3 parameter compact

Lie Group. Clearly the matrices R themselves form a representa-

tion of R3. However, we are interested in another representation of

R3. Consider a general one component field v (;5 which is classical

in the sense that it is to be interpreted as assigning a number to
every point in space. Then the rotation R induces a change in
Y — Y such that

> -

Y )= Y& (2.2)
where X is related toX by (2.1). The transformed field Y'is
related to '50 by a linear unitary transformation which we denote by
T(R):

[TR) ¥] @ = PR% (2.3)

T(R) operates in the space of the ¥ (35, generally a complex
infinite dimensional space, in contradistinction to R which operates
in a real 3-dimensional space. It can be shown that the operators
T(R) constitute a representation of R,. It is this representation
which we shall use to define the angu?ar momentum operators.

We specialize to the case of an infinitesimal rotation by an
angle 8 around an arbitrary axis @. This rotation can be reproduced
by three successive rotations around the three coordinate axes. To
first order, we can write

, 3
.[T(Rﬁ»’e)')b}(;’)=[ k7=Tl (1+Xk)‘/’}(x—.) (2.4)



6 M.E. ROSE

where the X, are certain infinitesimal operators. To first order,

k

k=1

[T(Rﬁ,e) 3/']65 = [(1+ i X,) sb](?:’)=¢(§$ + 8YE  (2.5)

We should really write

= > : =
Xk = Xk (7, 8) with the Xk such that g — 0 = Xk—> 0.
It is verified that the Xk satisfy
X, =- (. (2. 6)
k k :
*
Xk = - X (*denotes Hermitian
conjugate) (2.7)

We can make the parametric dependence of the Xk's explicit by
writing

Xy = - i n, Jk 6 (no summation) (2. 8)

J L2 3 are a set of linear hermitian operators independent of @,
: 4 b

[ The definitions of hermiticity etc. are as in usual non-relativistic
quantum mechanics.] For a finite rotation, it can be shown that

. -in - ? e -, .
[7mg 8] @- [ ]@ (2.9)
It will be noticed that the mapping T(R)—> J in

T(R) = ¢ 7.7 e

is essentially the mapping from a Lie group to its generating Lie
Algebra. The algebraic aspects of the theory of angular momentum
operators thus correspond to properties of the Lie Algebra of R3.

We define the Hermitian operator Jk (k=1, 2, 3) as the angular
momentum operators of the system.

For an explicit form for the Jk in terms of differential operators
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consider an infinitesimal rotation g around the_x3 axis; then

' -
xl -—Xl'l-e Xz
xz' =~ 0 Xl + xz (2' 10)
L -
x3 —x3

[TR)P] &) = Y@ +o (g 58 %) 52 25
=(-1i J3e)¢6?) by definition

. =
J3=-1 xxv)3—L (2. 11)

3
where L3 is the usual notation for the differential operator
=4 (;xe) 3)

If }b is a multi-component wave function with components
}Dp(}’) ,P=12,...,n then it can be shown that

- — -
T @=L xU+F¥ &
where S'is a certain set of three square matrices and 1l is the unit
matrix of the same number of dimensions as S. For a particle of
spin s, has dimension 2s + L.

2-2 Commutation Relations

We discuss in brief an intuitive geometrical approach for the
derivation of the commutation relations of the angular momentum
operators Iy [for details see ETAM pp. 20-22] .

Consider a point P on the x-axis and apply two infinitesimal
rotations dax and dey about the x- and y-axes respectively. We

next interchange the order in which the rotations are applied 'and
notice that the net difference between the two r otations is a rotation
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of magnitude d8_ de_ about the Z axis and we write:

-ide _J_ -id® J  -id8 J  -id8_J
X X vy vy X X

e e -e e
-id® _de_J
X yz
=e . -1
Expanding the exponentials up to second order in del and d92
. 1 2 _2 . 2
[1-ide,J - 3(@6)% 5% [1- e I (de) Jyz]
. 1 2 . 1 22
-[1-1d8.J -3 (e ) Jyz] [1-ide_J_-1e )% 2]
=1-ide_de_J
X 'y z
Consequently,
[Jx ) Jy] =1 Jz (2. 12)

Equating higher order coefficients on both sides would give relations
deducible from (2.12). This " proof'' emphasises the fact that the
commutation relations for the angular momentum operator are a
direct consequence of the lack of commutation of rotations.

All the commutation relations of type (2.12) can be summarized
as

[Jj ¢ Jk] =i ejk—LJ& (2.13)
(summation convention)
€ ik X,being the completely anti-symmetric third rank unit tensor.
2-3 The Total Angular Momentum Operator

Define next the operator 32 = ké sz.

give the total angular momentum of the system. We shall show that

The eigenvalues of 32

[32, T(R)] =0. This is an important result since it ensures that the
result of a measurement of the total angular momentum is indepen-
dent of the coordinate system in which the observation is made.

Thus it makes sense to speak of the spin of Li7 as 3/2, for instance.
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Now

-2 2
[J , Ji] =[k§1 AP Ji] =§ I, [Jk, Ji] 4-% [Jk, Ji:I I,
=1E, Gl Mly, + Ty =0
k, 2

since the first factor is antisymmetric in l_c’and 4 and the second
factor is symmetricink and £. .°. J 2 commutes with all
the functions of the J,, in particular with T(R). Later we recognize
that J2 is a scalar (1. e.a multiple of the unit matrix) when the
com_r.nutation relations with the J. follow at once. The eigenvalues
of J are thus independent 9_{ rotations of the coordinate system.
Further, we can diagonalize J 2 and one of the J simultaneously
and label eigenfunctions of the angular momentum operators with
tll.eir eigenvalues. Conventionally, Jgie.J  is diagonalized with

J 2 corresponding to the choice,in older ‘quantum theory, of z

as the " axis of quantization'.

The discussion so far has been purely geometrical. This
emphasizes that many of the answers to questions relating to
transitions in nuclei are purely kinematic having nothing to do with
the dynamics of the system. This separation will be emphasized and
made explicit when we discuss the Wigner-Eckart Theorem.

2-4 Eigenvalues of ?2 and Jz

Let the normalized eigenfunctions Y of j’ ¢ and J_ be labelled
113: é and m, two numbers corresponding to the eigenvafues n; of
J % and m of J . The 1/);“ are complete and orthonormal.
By definition

+2,,m m
IO =N5 ¥ (2. 14)
J, }a;“:@ Yy (2. 15)

. 2 2 -2 2,,, M
Ca e WT =@ R Byl (- mhp

Since (J x2 +J y2) is the sum of squares of Hermitian operators its
eigenvalues are real and positive,
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-/7—1-3 4m,g,/m (2. 16)
Let Ji=in iJy (2.17)
Also, let
+
(B3 F =@ +id)pT (2.18)
| B TR
-

+
Then (@ ;n)- is an eigenfunction of J3 with eigenvalue m+ L; for

m
Jz(g';‘)i =JiJz¢']?‘ +[ 3, Ji] ?,0].

m m
= mJi ;bj i-_Ji I,bj

since direct evaluation gives

[ Jz’ J:] =iJ+

+
. m, — m m
e 3,08 5) -mJ:¢jiJi¢j

+
=m0, pI o o=sman(e "
+

Also, (@ ;n) T is an eigenfunction of 3’2 with eigenvalue 7( i for

o2 m =2 ,m =2 m =2, m
J (Ji ¢j)=JiJ ;ﬁj +[J ,Ji]¢j=JiJ ;ﬁj
a
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Thus one has

+ +
'32(¢‘J?‘)‘ = My (2. 19)

m2 m+
Jz(ﬂj) =(mil)(¢j) (2. 20)

+
These equations show that the functions ( # 1:n)— must be proportional
to the normalized eigenfunctions 11‘ IJ.nil and one may write

m _ m,t .m+1 '
Jiy/j _(gj) =r'i ;0]_- (2. 21)

|"+ are constants of proportionality. Because of (2. 21) J+ are

sometimes called " raising" and ' lowering”" operators respectively.
Since (2. 16) holds, the values of m for a given value of sz are

bounded above and below. Let the maximum and minimum values
of m be m, and m, respectively forrlj =TI]. . Then

m m
2 2
1P 2=0,9.2 2o

(2. 22)
m, m
J_V’,- =0,¥ ! # 0
But ]
i 2 .
J-J+ =7 “dy — 9y
=2 2
II_ =3-3 4+,
m m
. 2 _ _ 2 2
al 3 J_J+ j =0 = (7?1.- m2-m2)¢j
m m
1 _ . 2 1
J+J-¢j =0 = (nj-ml +m1) w j
N.-m, (m +l) =0
22 (2. 23)

T(j - m (ml-l) =0
Eliminatin
Riing nj 2 m2(m2+l)=ml (ml -1)

&y (m2 + ml) (mz-ml +1)=0
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By assumption m,, ym; thus m -m Since the successive
values by m d1ffer by \}mty, (m -m )%nust be a non-negative

integer. We denote this integer by 2], thus j can have possible values

and from m2-m1=2j, m

.". For a given value of j, permissible values of m are

3 - 1 3
-ig m<];]=.0,§,l,§,.... (2. 24)

2=j’ ml='j

There are therefore 2j + 1 permissible value of m for a given j.
Inserting in either of (2. 23)

M, = G+ (2. 25)
m
To summarize: ?2 ¢j =j(j+1) ¢ =0, 12 , 1, % s .(2. 26)
m m .. .
Jz }";j = ml,bj ,m=j, j-1,...,-j (2. 27)

2-5 Matrix Elements of J and J in a Representation with

J 7 and J Diagonal

m +l
From (2. 2]) Jil,l’j = r‘:". ()bj z

J. are clearly non-diagonal in this representation since they
connect states with different m values. It is also clear that they
have non-zero matrix elements only one step off the diagonal.

We have

2
(Jiyj';‘, 5, ¥ = | r,l

st J ¥ )-H“l2



