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Preface

THis book has been written primarily to facilitate the grasp of both the
fundamental concepts and the techniques of vector analysis by the
beginning student. In addition to its use as a beginning text on vector
analysis, it should serve as a reference for advanced students, especially
in the engineering and physical science fields. It is hoped that the
numerous examples and exercises will make the book valuable to a
large number of engineers for self-study.

To carry out these objectives, the authors have included examples
and exercises that illustrate many applications of the theory to
geometry and physics. In addition to problems of the standard types,
many problems have been included which bring out more difficult
aspects of the subject. They serve the dual purpose of introducing the
student to a deeper appreciation of the subject and of indicating many
applications which might not be apparent on a first reading.

It is the belief of the authors that vector analysis should be con-
sidered as both a mathematical discipline and a language of physics.
The close relation between these two branches of science that arises
naturally is not difficult to see, but the ability to think in terms of
vectors is an art that requires both insight and practice. It is the
intent of the authors to present the material in such a way that both
objectives will result from a close study of this book. Consequently,
throughout the book chapters on applications are interspersed with the
mathematical theory and development. Thus the study of applications,
that is, the relations among vector analysis, geometry, and physics, is
carried along with the mathematical theory. In this way, insight is
developed, and the many problems provide the practice.

Many topics of an advanced nature necessarily were omitted. As a
mathematical text it covers the fundamentals of vector analysis.
The applications to geometry and physics are limited to those with
with which most readers will be expected to have some familiarity.

The first part of the book is devoted to the algebra and calculus of
vectors and vector functions, and some of the simpler applications to
geometry and physics are treated. Later chapters are concerned with
specialized topics and more advanced types of applications. Chapters
8 to 11 discuss rather thoroughly the subjects of differential geometry,
harmonic functions, and electricity and magnetism. The final chapter

Xi



Xii Preface

on linear vector functions introduces dyadics and their applications to
geometry and physics.

For a three-hour, one-semester course, the first seven chapters may
prove to be sufficient. Material selected from Chapters 8 to 12 may
supplement them.

For ease of reference, equations and theorems are numbered by
sections. A reference to a numbered equation or theorem is given by
Eq. (11.18-3) or Theorem 11.12—1, for example, which means that the
equation will be found in Chapter 11, Section 18, the theorem in
Chapter 11, Section 12. Sections and illustrative figures are numbered
by chapters.

The authors wish to express their appreciation to Professors Henry
Spragens and Carl Adams of the University of Louisville for their
assistance in reviewing the manuscript and their many valuable
suggestions.

MANUEL SCHWARTZ
SIMON GREEN
W. A. RUTLEDGE
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CHAPTER I

Vector Algebra

I.I. Definition of Vector

In physics we usually divide quantities into two classes. Some
quantities, such as length and time, having only magnitude can be
specified by a single real number which is called a scalar. For other
quantities, such as displacement and velocity, it is necessary to specify
both the magnitudes and directions to describe them completely.
Quantities having only magnitude are called scalar quantities. Quanti-
ties having both magnitude and direction
are called vector quantities. B

A vector quantity can be represented Q
by a directed line segment which, if it
obeys the laws for scalar multiplication
and for addition as described in Sect. 1.4 b
and Sect. 1.5 below, will be called a
vector. The magnitude of the vector
quantity will be represented by the P
length of the vector, the direction Fig. 1.1
associated with the quantity will be
represented by the direction of the vector (Fig. 1.1).

For brevity we may refer to scalar quantities as scalars, and to vector
quantities as vectors.

1.2. Equal Vectors

Two vectors are called equal if they have the same direction and
length. Thus, in Fig. 1.1, the two vectors shown are equal. It is to
be noted that the equality of vectors is independent of their positions
in space.

1.3. Notation

We shall refer to the vectors in Fig. 1.1 as AB and PQ, the order of

the letters indicating the initial point and the terminal point. They
I



2 Vector Analysis with Applications to Geometry and Physics [Ch. I

may also be indicated by a lower-case boldfaced letter, as a. The
length of a vector (a scalar) will be denoted by the absolute value
symbol; thus the length of AB is written |[AB|. When a is used to
represent a vector, then the length of a may be written as |a| or simply
asa. A vector of length zero will be denoted by 0 and is called the zero
vector. The zero vector will be considered to have any direction.
This convention will avoid the necessity of making many special state-

ments for the exceptional cases involving

the zero vector.
1.4. Scalar Multiplication
The product of a scalar A and a vector a
e —2a  (written Aa)is a vector whose length is Aa
and whose direction is the same as that
# of a when A > 0 and opposite to that of a
when A < 0. In Fig. 1.2 the vector a and

the products 3a and —2a are shown.
Clearly if b is a vector parallel to a, then

Fig 12 b is a scalar multiple of a.

1.5. Vector Addition

The addition of vectors is performed by the ‘“‘triangle” rule. The
(vector) sum a + b is a vector whose initial point is the initial point
of a and whose terminal point is the terminal point of b” where b’ = b,
and b’ is adjoined to a as shown in Fig. 1.3. From Fig. 1.4 it is evident

b
a+b
a
b+a -
b
Fig. 1.3 Fig. 1.4

that the vector sum b + a equals the sum a + b. This is the com-
mutative law of vector addition.

To add three vectors a, b, and ¢, let them be adjoined as in Fig. 1.5.
It is easily seen that (a + b) + ¢ = a + (b + ¢), and we have the
associative law for vector addition. Note that the three vectors need
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not lie in the same plane. The extension to any number of vectors is
obvious.

Vectors also obey the distributive law with respect to multiplication
by a scalar, that is,

Aa + Ab = A(a + b).

In Fig. 1.6, A A BC is similar to A\ A B'C’, since two corresponding sides
are parallel and the angle at A4 is
common. Then

|AC| _ |AB| _ b _ o
|AC[ ~ [AB| “[b] T
Since AC = a + b,
|AC,| — IAC’ = X\ a+b+c
|AC| la + b|

Fig. .5
or

|AC’| = A(]a + b]).
The vectors AC’ and AC have the same direction ; hence,

AC = Aa + b).
But
AC' = Xb + B'C' = Ab + )a.

Therefore,

A(a + b) = da + Ab.

The preceding discussion shows
that vectors obey three familiar
arithmetic laws, namely, the com-
mutative and associative laws of
addition, and the distributive law
for scalar multiplication.

In the addition of vectors we made
use of the fact that a vector can be
replaced by an equal vector. If

D’ C

Fig. 1.6 vectors a and b lie in the same plane,
then we shall consider any vector
b’ = b to be coplanar with a. It is a trivial consequence that any

two vectors are coplanar. However, three or more vectors may be
non-coplanar.
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1.6. Linear Functions
Consider a vector ¢ (Fig. 1.7). Any two vectors a and b whose vector
sum is ¢ are called vector components of ¢. Thus in Fig. 1.7 a and b
are vector components of c. Also a’ and b” are vector components of e.
The most important case of vector components is that in which the
components are perpendicular. Thus in Fig. 1.8 a and b are per-

a
Fig. 1.7 Fig. 1.8
pendicular (plane) components of ¢. Then ¢2 = a2 + b2 If uis a
vector parallel to a, and v is a vector parallel to b, then
a = Au, b = puv
for proper choices of A and . Thus
c = Au + uv.

This expresses ¢ as a linear combination (or linear function) of u and v.
In particular if u and v are unit vectors,
that is, they have length 1, then the
length of ¢ is

l
l ’ ¢ = VA + pl
)_ o The above may be extended to three
XA components in space. Thus in Fig. 1.9
// b
s r=a+b+ec,
a0 and if a, b, and ¢ are pairwise per-
Fig. 1.9 pendicular, they constitute three per-

pendicular components of r. If uy, us,
us are unit vectors parallel to a, b, and ¢, respectively, then

a = auj, b = bus, ¢ = cug,
and 7, the length of r, is the diagonal of the parallelepiped. Hence

[r| = r = Va2 + b2 + 2,
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and r may be expressed as a linear combination of these unit vectors.
Thus
r = au; + buz + cus.

1.7. Linear Dependence

Let a, b, and ¢ be any vectors. If there are three scalars A, u, and v

at least one of which is not zero, and

Aa + ub + ve = 0, (1.7-1)
then we say that a, b, and c are linearly dependent vectors. On the
other hand, if A, x, and v are all zero whenever Eq. (1.7-1) holds, then
we say that the vectors are linearly independent.

The above statements may be extended to any number of vectors.
For example, the vectors a, a — b, b, and b + ¢ are linearly dependent
since

la — 1(a—b) — 1b + O(b + ¢) = 0,
and not all the coefficients are zero. Note. a — b = a + (— b).

D C

EXAMPLES

1. ABCD is a parallelogram. Let
AB = a, AD =d (Fig. 1.10).
Express BC, CD, CA, and BD in
terms of a and d. a

Solution. Since BC is parallel Fig. 1.10
to AD and oriented in the same
direction, BC = AD = d. CD is parallel to AB but has an opposite
orientation ; hence, CD = —AB = —a. Now, BC = d, and it follows
that AC = a +d. Hence CA = —AC = —a — d. Also, AB + BD
= AD, whence BD = AD — AB = d—a.

2. If Aa + pub = 0 but not both A and p

are zero, then a is parallel to b.

Proof. If A # 0, then a = (— u/A) b;
that is, a is a scalar multiple of b and is,
therefore, parallel to b. Note. The state-
ment may be made that “if a and b are
linearly dependent, then they are parallel.”

Fig. 111 3. Show: (a) |a + b| < |a| + |b];
(%) |a —b| > |[a] — [b]|.

Proof of (a). In AABC (Fig. 1.11) let AB = a, BC = b. Then
a + b = AC. From plane geometry the length of one side of a triangle -
is less than or equal to the sum of the other two sides. Thus

|a + b] < |a] + [b].

c

a
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Proof of (b). We have
|a| = |(a — b) + b].
From part (a)
|a — B[ + [b] > [a],

or
a = b] > [a] = [b].
If |a| > |b|, then |a| — |b| = ||a|] —
A |b|| and the theorem follows. If

|b| > |a|, the theorem may be proved
by simply interchanging a and b.

o 4. If OA and OB are not parallel and
not 0, any vector OC in the plane
of OA and OB can be expressed in

p  the form

A0A + pOB.

Proof. Through C draw a line

parallel to OA intersecting the line

c OB at P (Fig. 1.12). Now OP =
#wOB and PC = AOA. Since 0C =
OP + PC we have OC = 0B + M0A.

5. If a and b are any two non-parallel non-zero vectors, then any vector
¢ coplanar with both a and b can be written in the form

¢ = Aa + ub.

Fig. 1.12

Proof. If a and b issue from the same point, then Example 4
applies. If not, we may use a vector equal to b having the same initial
point as a, and then use the results
of Example 4. B iy

6. If ¢ = Aa + pb, then ¢ is coplanar
with a and b. \a

Proof. We may use a vector b’
equal to b, where b’ has its initial
point at the terminal point of a. 4
Then Aa + pub = Aa + ub’ = c. Fig. 1.13
From Fig. 1.13, ¢, or a vector equal
to ¢, has two points in the plane of 4, B, C, namely, 4 and C. There-
fore ¢ lies in the plane of Aa and pb’. Hence, ¢ is coplanar with a and b.
7. If a and b are not parallel and not zero vectors, then any vector ¢

coplanar with a and b can be represented in one and only one way

in the form
¢ = Aa + ub.
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Proof. From Example 4 it is possible to write ¢ = Aa + pb. Sup-
pose now that there is a second such expression for ¢, say ¢ = X'a + u’b.
Then

A=A+ (p—pu)h =0
Now if either A — A" # 0 or u — p’ # 0, then, by Example 2, a and b
are parallel, contrary to hypothesis. Therefore, either A — A’ = 0 or
pw—p =0. Suppose A — A" = 0. Then (un — p’)b =0, and since
b # 0, it follows that p — p' =0, or p =pu'. Thus A = X" and
w = p’, and the representation of ¢ is unique.
8. Let a=0A, b= 0B, ¢ =0C

(Fig. 1.14). If C lies on the line

A B, then

¢ = Aa + ub,
with
A+p=1
Proof. AB +a=D»b
or
AB =Db — a,
and
AC =c¢ — a.
Since AC and AB are parallel, Fig. 1.14

AC = pAB for some p; that is,
¢ —a=ub — a).
On simplification, we have
c=upb + (1 — pa.
Letl1 — p=A ThenA + p =1and

c=)\a+;:.b.
Note.
[AC| _ g,
ICB| A
Now
iA—gll=,u. and p=1— A,
|AC|
[AC + cB| "

or, since AC and AC + CB are in the same direction,
AC = pAC + uCB,
(1 — u)AC = uCB.
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But

A=1 — 7
Therefore,

AC = uCB.

9. If a, b, and ¢ have the same initial point and ¢ = Aa + pb with
A + p = 1, then the terminal points are collinear.

Proof. Since p =1 — A,
c=2A + (1 —A)b
= Aa — b) + b,
¢ — b =Aa —b)
Refer to Fig. 1.14. We see that

¢c — b= BC,

a — b = BA.
Thus

BC = ABA,

and the points 4, B, C' are collinear.

10. Let a = 0A, b= 0B, ¢ = 0C,
d = OD with a, b, and ¢ non-
coplanar (Fig. 1.15); that is, the
three vectors are not parallel to the

same plane. If D lies in the plane
of 4, B, and C, then

Fig. 1.15 d=2X+ ub+vewithd +u +v=1
Proof.
AB =b — a,
BC =c¢ — b

Since AD lies in the plane of 4, B, C it can be expressed as a linear
combination of AB and BC (see Example 5). Then

ANb—a)+ u(c—Db)=AD =d — a,
from which
d=a(l —X)+ b —pu) + e
Set 1 — X =X X —u' =pu,u =v. Then

A—i—,u.%—v:l
and
d =2a + ub + ve.
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11. If a, b, ¢, and d have a common initial point O, and Aa + pb + ve
=d with A + p + v = 1, then the terminal points of a, b, ¢, and d
are coplanar.

Proof. Since A + p + v = 1, we may writev = 1 — A — u. From

Fig. 1.15,AB =b — a,BC =c¢ — b,and AD =d — a. Now

d=2da + pb + (1 — A — pe,
and subtracting a from each side, we have

d—a=QA—-1)a + ub —c) + (1 — Ae
=(1—-2)(—a)+ (1 —A)e + ub — c).
Combining, we get
d—a=(1-2A)c—a)+ ub - c).
This says that d — a is a linear combination of AC and BC, and there-
fore AD lies in the plane of the points 4, B, and C.
12. Prove the following.
(1) If a subset of n vectors is linearly dependent, then the vectors
are linearly dependent.
(2) If n vectors are linearly independent, then any subset of these
n vectors is linearly independent.
(3) If » vectors are linearly dependent, n > 1, then at least one of
the vectors is a linear combination of the remaining vectors.
(4) If » vectors are linearly independent, but » + 1 vectors are
linearly dependent, then the (n + 1)st vector is a linear combi-
nation of the other n.

Proofs.
(1) Let a;, as, as, - - -, ap constitute the subset. Then there are
ci (1 = 1,2,---,m)not all zero such that
c1a1 + C2ag + -+ - + Cmam = 0.
Then

ci1a1 + Coag + - -+ + CmaAm + Oapmir + - -+ + 0a, = 0.

Since not all the ¢’s are zero, the n vectors are linearly dependent.

(2) If any subset of the n vectors were not linearly independent,
then it would be possible to find ¢;’s not all different from zero, and
proceeding as in (1), we could show that the » vectors are linearly
dependent, contrary to hypothesis.

(3) Since n vectors are linearly dependent, we can write

c1a; + Coas + - - - + Chay = 0
where not all the ¢’s are zero. Suppose ¢; # 0. Then
Cn

C1 C2
a; = — |—ay + —azg + -+ + —an|-
Ci Ci Ci
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(4) Let ay, ag, - - -, a, be n linearly independent vectors and b be the
(n + 1)st vector. Then

cia1 + C2ag + -+ - + Cprap + Cp1b = 0
and not all ¢’s are zero. Ifec,y; = 0, then
ciar + cgas + -+ - + cha, = 0

and not all these ¢’s are zero which is contrary to the hypothesis that
the n vectors are linearly independent. Therefore ¢,+1 # 0, and

b= — [cl a1+ 2 ay 4 e 2 an]-
Cn+1 Cn+1 Cn+1
13. In a plane at most two vectors can be linearly independent.

Proof. Let a, b, and ¢ be three coplanar vectors. Suppose a and b
are linearly independent. Then a is not parallel to b since then a
would be a scalar multiple of b and they would be linearly dependent.
By Example 5 we may write

¢ = Aa + ub.
Then
Aa + pb —1le =0
with not all coefficients zero. Hence the vectors are linearly dependent.
14. If Aa + ub + ve = Am + un + vp,

D c and not all of A, u, v are zero,
then the vectors a — m, b — n,
P ¢ — p are linearly dependent.

Proof. Since Aa + pb + ve =
Am + pn + vp, then

b AMa — m) + u(b —n) + v(c —p) = 0.
Fig. 1.16 Since by hypothesis not all of A, p,
v are zero, it follows that these
vectors are linearly dependent.
15. Show that the diagonals of a parallelogram bisect each other.
Proof. In Fig. 1.16, P lies on BD and therefore,

AP = da + ub
with
A4 p =1
Also
AP = vAC = v(a + b);
therefore,

Aa + pb = v(a + b)



