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FOREWORD

This volume gives an accessible account of the fundamental concepts
of the theory of linear spaces with finite dimension and the theory of
linear spaces with infinite dimension, with special emphasis upon
their similarities and the contrasts between them.

The ideas and methods in this work are applied to a careful gen-
eralization of finite systems of linear algebraic equations to infinite
systems in perspective with the theory of linear operators. Some
theorems dealing with infinite matrices and infinite systems of alge-
braic equations are included.

The book concludes with some of the most important unsolved
problems in the theory of linear spaces. Let us hope that this list
contributes to the spread of mathematical richness among our young
generation with the consequence that many of the problems will be
attacked and brought to solution.

I find this to be an excellent book, suitable as a reference or as

a text. It is clear, very well written, and carefully organized.

University of California at Berkeley Themistocles M. Rassias



PREFACE

This book was written to compare the theory of linear spaces with
finite dimension and the theory of linear spaces with infinite dimen-
sion. It does so by showing contrasts and similarities. First, com-
parisons are made when the spaces are not assumed to have an ac-
companying topology--a strictly algebraic, nonanalytic setting. Sec-
ond, comparisons are made when the spaces are endowed with a
topology, the topological structure arising from an inner product, a
norm, a metric, or a nonmetric assumption.

A feature of this book, while not directly related to the main
objective, is that the exposition contains extensive lines of develop-
ment, in both the finite and infinite dimensional theory of linear
spaces, where topological as well as nontopological conditions are
included. These "lines” unravel as the comparative study is pursued.
We have included a comprehensive collection of theorems each having
a principal role in the overall theory of linear spaces. In light of the
results found in this volume, the book can serve as a reference for
both students and accomplished mathematicians and scientists.

The book is suitable as a text as well. The order in which the-
orems are presented generally permits one to prove each theorem by
relying upon previously established results. This is strongly the
case for the first chapter of the book where for nearly all of the the-

orems in the infinite dimensional theory a proof is provided. Numerous
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viii Preface

problems covering a broad scope of ideas are posed at the end of the
first three chapters to assist the reader in expanding or testing his or
her understanding of the material. A special fourth chapter is devoted
to significant research questions in the field of this monograph. While
the primary audience for a thorough study of the first three chapters

is likely to be second-year or third-year graduate students of mathe-
matics, the first chapter has been used with undergraduate mathemat-
ics majors for independent study courses and as a textbook for a sem-
inar course on infinite dimensional linear spaces.

The following is the method by which the purposes of this book
are realized. A theorem central to the subject of linear spaces with
finite dimension is stated. It is accompanied by an analogous theo-
rem from the theory of linear spaces with infinite dimension when an
appropriate analogue exists. If a theorem in the finite dimensional
theory has no "reasonable” infinite dimensional analogue, an illus-
trative example is presented or cited to bear this out. The analogue
of a theorem from the finite dimensional theory that results simply by
changing the condition of finite dimensionality to one of infinite di-
mensionality is, let us agree, the "strongest analogue. "

An overview of much of mathematics can be derived from a simple
but thoughtful reading of these pages. One will find a representative
blend of variously labeled branches of mathematics. Here is a meet-
ing place for the foundations of mathematics, classical analysis,
linear algebra, abstract algebra, and topology. One will find here
pure and applied mathematics, however one might choose to-separate
those realms, if at all. And if we might single out one essential
group for whom a knowledge of this mathematics should prove to be
particularly valuable, we cite those who provide undergraduate in-
struction. This exposition can be gainfully used to develop a mathe-
matical perspective upon the first four or five years of a traditional

college or university mathematics education.
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Additional features of this book include a careful distinction and
treatment of the notions of algebraic and analytic bases for linear
spaces, the generalization of finite systems of linear algebraic equa-
tions to infinite systems, to integral equations, and finally to linear
operators generally, and the inclusion of some theorems dealing with
infinite matrices and infinite systems of algebraic equations taken
from a variety of sources and not known to be found collectively in
one volume.

The first chapter can be used as text material for a course in the
algebraic theory of infinite dimensional linear spaces. It can also
serve as a skeletal exposition of the analogous theory for finite di-
mensional spaces. But with only occasional exceptions, the proofs
for the latter theory are not found here. However, students can be
assigned the task, and are encouraged to take it upon themselves,
to establish the companion finite dimensional case results.

The subject of linear spaces with infinite dimension was devel-
oped mainly during this century. Its origin is due largely to Ivar
Fredholm (1866-1927) and Vito Volterra (1860-1940). Each of these
mathematicians visualized the limiting case of the finite system of
linear algebraic equations as the number of equations and unknowns
become infinite, as leading to the theory of integral equations. In
turn, the theory of integral equations, substantially influenced by
the work of David Hilbert (1861-1943), John von Neumann (1903-1957),
Erhard Schmidt (1876-1959), and Frigyes Riesz (1880-1956), gave rise
to the theory of linear spaces with infinite dimension. Hilbert space
and Banach space are prime examples.

Regarding some conventions that are made in this presentation, in
Chapterl atheorem in the theory of linear spaces with finite dimensionis
assigned a letter of the English alphabet, e.g., Theorem 1.3-D, the
latter designating a theorem from Chapter 1, Section 3. The infinite

dimensional analogue or appropriate accompanying example is assigned
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the same letter except that the symbol “prime” is attached, e. g.,
Theorem 1.3-D'. Note that we use exclusively the term "linear space”
when referring to what some authors in certain settings might call a
“vector space” while in other circumstances might use the term "linear

2

space.” One can make a good case for using either of the terms as
well as "linear vector space.” The structure of these spaces is lin-
ear; the objects in the spaces are vectors.

I take this opportunity to express my sincere gratitude to Profes-
sors Erik Hemmingsen, Donald Kibbey, and especially Jerome Blackman,
all of Syracuse University, for their varied and timely assistance in
the development of this manuscript. A first version of this exposition
was written by the author as a doctoral dissertation under the super-
vision of Dr. Blackman, the idea of that monograph being to expose
an area of mathematics in which some of the original work of the
author would hold a place rather than the other way around. I owe
these mathematicians more than I will ever be able to give in return.
The author is greatly indebted to Themistocles Rassias of Greece who
read the entire manuscript and contributed many of the exercises and
the bulk of the research problems. His inspiring manner and helpful
conversation, especially at the University of California at Berkeley
during the summer of 1977 at which time the author was a Visiting
Scholar at Berkeley, will never be forgotten.

Special appreciation is extended to Hjalmer Anderson and to John
O'Dougherty for their influence during the early education of the author
in the subjects of mathematics and language, respectively, and to my
parents, who continued to teach me the value of education, beginning
at a point earlier in my life than I am able to recall. Lastly, I thank
my wife and sons for their patience and support.

The study of infinite dimensional linear spaces is currently an

active area of research in mathematics. This book is, of course, but
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a brief survey of the theory of linear spaces, in keeping with the in-
tentions already mentioned. Dr. Rassias has called it "a book of
ideas.” The hope of the author is that these pages will be instrumen-
tal in the creation of new ideas in the expanding world of mathematics
and that what is written here will help to make known the nature of

this branch of mathematics.

Richard D. Jarvinen



L'essence des mathématiques c'est la liberté.
G. Cantor

It is difficult to give an idea of the vast extent
of modern mathematics.
A. Cayley

There's lots of room left in Hilbert space.

S. MaclLane
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Chapter 1

NONTOPOLOGICAL LINEAR SPACE THEORY

The setting in this chapter is exclusively algebraic, nonanalytic.
Convergence questions are not encountered. We present theorems
that are central to the subject of finite dimensional linear spaces,
theorems that are found in thorough treatments of linear algebra or
finite dimensional linear space theory. We ask whether or not such
theorems remain true if the condition of finite dimensionality is lifted
and replaced by one of infinite dimensionality. If there is no reason-
able analogue, an example is provided to show why.

We assume that the reader is able to handle the mathematical
sophistication that is proper to a careful treatment of the notion of
function and some of its properties. Only inasmuch as we have need
for them, we present results from the foundations of mathematics, set
theoretic notions that enable us to do the "transfinite trickery"--a
term used by Paul Halmos (1958)—— to prove the theorems aboutin-
finite dimensional linear spaces that appear. It is not our intention
to prove the finite dimensional case theorems, although some of them
are proved in the process of establishing the infinite dimensional

case results.

§1. THE CONCEPTS OF GROUP, FIELD, AND LINEAR SPACE

The notion of function (map, mapping, transformation, operator,

correspondence) has been an evolving one. In fact, for most of the

1



2 Chap. 1 Nontopological Linear Space Theory

last century this concept was not understood in the same sense that
it is today. What is clear, however, is that this notion in its various
evolutionary stages has played a key role in the development of math-
ematics. Progress in the field of mathematical analysis, for instance,
has depended critically upon advantageous use of refinements of this
concept. A careful exposition of this dependence together with a
thorough treatment of the historical role of the notion of a function is
found in Manheim (1964).

As the function concept is understood today [ see Hewitt and
Stromberg (1965) for a full and careful treatment of this notion] it
holds a primary position in mathematics. In the field of algebra, for
example, the function concept is usually at the base of the definitions
that form the underpinnings of an algebraic system. This is the case
for the definitions of graup, field, and linear space. For, modulo
some equivalence relations, one function is a group, two constitute
a field, and four define a linear space. In fact an arbitrary vector in
an arbitrary linear space can be realized as a function, an important
observation that is made in subsequent pages. Needless to say, the
functions we have referred to must possess some rather special pro-
perties, and these are detailed in the following paragraphs.

To be definite as well as brief, we define a function, say f, to
be a collection of ordered pairs for which (x,v) €f and (x,z) €f imply
¥ = 2

Assume 1“1, PZ, 1‘3 are three nonempty, possibly pairwise dis-
tinct sets. Let (yl, yz) -V EY, denote a mapping of I, X I'_ into

1 2

r3. We call this type of function a pairin , Or a x-pairing (in light

of the notation), of 1“1 and L, into l"3 and refer to V) %Y, as the s-
join of Y and Y, When no ambiguity is possible, we shall say
"pairing” rather than "#-pairing.” Pairings are precisely the functions

needed in making the definitions of group, field, and linear space.
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It should be noted that in the last paragraph we have tacitly
assumed that a notion of equality, i. e., an equivalence relation,
has been defined on each of the sets I‘l X l"2 and 1“3, for otherwise
it could not be decided whether or not a given object in the domain
has a unique image under the pairing. If we assume that ordered
pairs in 1‘l X I‘2 are equal if and only if their respective coordinates
are equal, then we arrive at a minimal mathematical structure within
which it can be concluded that equals joined to equals are equal, a
result so commonly used in establishing general properties of groups,
fields, linear spaces, and other algebraic systems.

A x=pairing of I X I'_ into I’  with I = I = I'_ = I is denoted

1 2 3 1 2 3
(T, *) and is called a commutative group provided

L a*x(@B*y)=(e@*p)*yforallae,p, y€ET.
2. There exists (identity) e € I"such that e * @ = o for all @« € T,
3, For each @ €T there exists (inverse) a_l € I such that

o *a=e,.

4. a* B = p*aforallapel.

It is believed that Leopold Kronecker (1823-1891) in 1870 gave the
earliest explicit set of postulates for an abstract group.

Suppose (T, *) is a commutative group and (' - {e}, %) is also a
commutative group with identity €. Suppose further that *-joins and

% -joins are related by

*)

5. a* (Bxy) = (@%p) * (a
6. @xp) Fy= (@*y) *(p

y) for all @, B,y ET.

¥*»

¥*)

y) for all o, B,y ET.

Then the commutative groups (T, *) and (I'- {e}, %) together with
properties 5 and 6 is called a field and is denoted [ (T, *), (T, %)].
One should check to see if properties 1, 2, 3, and 4 continue

to hold when they are stated for the %—pairing involving e, for little--
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just 5 and 6--has been assumed about ?k—joins which involve e. It is

&

implicit in the distributive laws 5 and 6 that o * e and e % o are de-

fined for all « €ET. The same laws enable us to deduce that o %e = e

and e ¥a = eforalla €T, for from 5, a ¥e= a% (e*e) = (o Fe) *

(@ % e), and thus e = o« ¥ e. Analogously one can show e ¥ a = e.
The following are consequences of this definition of a field,

while they are often found as integral parts of equivalent definitions

of a field:

(@) The set I"has at least two members.
(b) The identities e and & are distinct.

(c) The identity e has no inverse with respect to the %-pairing.

The first of the above follows since (T, *) and (T, %) are distinct
%) and (T~ {e}, %) are

P ~
distinct groups, and the third because e * o and a * e, each now seen

(nonempty) functions, the second because (T,

to be equal to e for all « €I are certainly different from é.

Suppose [ (T, *), (T, ¥)] is a field and (X, ¥) is a commutative
group. Further, assume :”:: I'X X —X is a pairing and that the -

-~

%=, %= and *-joins are related by

)

7. a*(B*x)= (@%p) *xforalle,pETand X €X.
8. 8%% =xXforall¥EX,
9. ¢ * @%Y) = @* D) F (@ *7) for allaerandallz,;ex.

~
0

10 (@*p)*x=(a*x) % (B*x) for all ¢, pE€ and all X €X.

Together these four special functions constitute a linear (vector) space

over the field . More pointedly we have defined what is sometimes

called a left vector space over I'. Analogously we can define a right

vector space over I by replacing N X X =X with N XX T —X.

But then the left and right linear spaces are algebraically equivalent,
i. e., isomorphic, and there is no need to distinguish them. Each ob-

ject in X is called a vector while each element of I" is called a scalar.
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Because of the clarity context brings, there is no need to con-
tinue with the cumbersome notation which has at this point accumulat-

ed. We replace the symbols * and % by the symbol +, the symbols

% and * by - or no symbol at all, and call the first notation field

addition or vector addition, as context dictates, and the second

notation either field multiplication or scalar multiplication. Instead

of saying "let [ (T, *), (T, ¥, X, %), (Cx X, % X)] be a linear space, "

we simply shall say "let X be a linear space over the field T, " or
even more briefly, "let X be a linear space” when it is clear what the
field is.

Later we refer to the following notion. A field T is said to have
characteristic n if n is the least positive integer for which ny = e for
for every y €T'; if no such n exists, then I'" is said to have character-
istic 0. The notation ny means y joined to itself n times. The real
numbers R and the complex numbers C are examples of fields of char-
acteristic zero. It is customary to have the letter F represent a field,

and we adopt this convention.

§2. SET THEORETIC NOTIONS AND OTHER PRELIMINARIES

In various branches of mathematics circumstances present themselves
in which the methods of elementary set theory are not adequate to
permit constructions, proofs, or definitions to be formulated that may
be needed to develop a theory or model. In 1904 Ernst Zermelo (1871~
1953) stated an axiom different from those found in elementary set
theory, called the axiom of choice. It permits one to make construc-
tions, proofs, and definitions beyond those elementary set theory
allows. Some of these appear in the next section.

During the early 1960s, Paul J. Cohen (1934-) proved that
the axiom of choice is independent of the other axioms of set
theory. That result allows the development of a consistent

mathematical system in which the axiom of choice can be either



