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PREFACE

The workings of the brain have fascinated me since childhood. I had ob-
served with interest that whenever a question was asked in the classroom
many different answers were given. Every classmate was thinking and
perceiving the same question from an entirely different viewpoint and thus
an answer was given according to their own particular perspective. This
diversity in perspective is so profound. It adds even more dimension to
world around us. We (humans) have a depth of visualization so powerful
that we can close our eyes and . . . imagine. Imagination is timeless, bound-
less, unlimited and it happens right there in a few cubic centimeters of soft
matter, the brain. Close your eyes and you can “see” faces you have not
seen for years or “smell” summer fragrances in the middle of the winter;
or “travel” through space, crossing distant galaxies with an incomprehen-
sible speed that defies all laws of physics. Close your eyes and you can
create ideas that never before existed. Someone “saw” a wheel for the first
time and made a cart; another heard the first music before music was sung.
Someone for the first time “saw” the benefit of the volcanic fire and used
it to warm houses, to cook, to extract metals from rocks, and to make tools
and weapons. And this inventiveness continues to this day. We “saw” the
invisible forces of matter, controlled them, and produced electricity, we
made radios and computers and we escaped into space. So, is it surprizing
that for many years this mind-boggling power of the brain has been the
subject of research?

I have been compiling information about the biology of the brain and
sifting through-articles and studies on neural research for quite a few years
now. As a physicist and an engineer, [ wanted to understand the mechanics
and innerworkings of the brain. As soon as I had an organized set of notes
that I thought had pedagogical value, I decided to give a tutorial in neural

xiii



xiv Preface

networks at the Globecom 91 communications conference. To the best of
my knowledge, such a tutorial had not been presented previously at any
communications conference and I thought this would be a good chance to
find out how much interest there is in this area. We expected a relatively
small audience. To our surprise, we had an overwhelming attendance—a
full house. The feedback I received at the end of the tutorial was very
enthusiastic. I therefore enhanced my tutorial notes, simplified certain
math-intensive sections, and included fuzzy logic and fuzzy neural net-
works. I also organized conference sessions on neural networks and fuzzy
logic. Although participation was small at first, it has steadily increased.
The interest from the communications community alone has so increased
that, in 1993, a conference was organized on neural networks in commu-
nications. | presented my tutorial a few more times and, every time, the
audience suggested that I should publish my notes as a book.

The intention of this book is to provide an introduction to the subject
of neural networks, fuzzy logic, and fuzzy neural networks; to provide, in
a coherent and methodical manner, the concepts of neural networks and
fuzzy logic with easy to understand examples that describe a number of
applications in a nonmathematical way; to address a need of the scientific
community that other books in neural networks and in fuzzy logic do not
address; and to provide a linkage between neural networks and fuzzy logic.
The majority of books I have seen on this subject require a level of expertise
to understand the material. Some, however, are invaluable tools for the
connoiseur. The material and depth of this book was prepared for those
who want an introduction to neural networks and fuzzy logic but need more
than a tutorial. For a more advanced textbook, IEEE PRESS, as well as
other publishers, has a number of them available by catalog. I wish you
happy and easy reading.
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INTRODUCTION

A NEW BREED OF PROCESSOR: THE BRAIN

A new kind of arithmetic, called Boolean logic, was developed in the 19th
century. The product of propositional logic, Boolean logic was based on
binary rather than decimal arithmetic. Most people thought it useless, so it
remained in obscurity for decades. However, Boolean logic was rediscov-
ered and, along with integrated circuitry, brought to light the microproces-
sor and the modern computer.

The modern computer, based on binary arithmetic in conjunction with
sophisticated programming, has changed the way we do business and ex-
change information. In many ways, it has changed our lifestyles and think-
ing. It is a primary tool in science especially in the development of intel-
ligent machines, applications such as information processing (data, video,
speech, etc.), intelligent communications networks, and control applica-
tions, from sophisticated research instruments to dishwashers. Despite
the outstanding performance of today’s computer, there is an increasing
demand for higher speed, larger storage capacity, greater machine intelli-
gence, and “ingenuity.” Computer power keeps increasing while its size,
as well as cost, keeps decreasing. In the computer industry, the pressure is
on to have a “next generation” approximately every six to twelve months,
with still lower cost and greater performance.

Advance in microelectronics continually shrink the size of the tran-
sistor, so that increasingly more circuitry (measured by many millions of
transistors) is integrated into less silicon space. At the beginning of the
1970s the number of transistors integrated was around a few thousand,
whereas in the beginning of the 1990s it was several million. In 1980,
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xviii Introduction

the largest random access memory circuit was 64,000 bits; by the end of
the decade it was 1 million bits and before the end of this decade it is
expected to be 64 million bits. Moreover, transistor power consumption
keeps decreasing, making it possible to use smaller, longer-lasting batteries
(necessary for portable computers and communicators), thereby increasing
the switching speed of the transistor and its performance. Presently, mi-
croprocessors with speeds above 100 MHz are supplied by several vendors
and, at this rate of evolution, it won’t be long before we have speeds of
several hundred megahertz.

It is estimated that today’s top-performance processor, with 100—-150
million instructions per second (MIPS), will be the lower performer in justa
few years. One of the metrics for evaluating the performance of a processor
is the SPECint92 (for System Performance Evaluation Corporation integer
calculations). Based on this metric, today’s top performers have in excess
of 100 SPECint92; before the end of the century they are expected to have
more than 1000 SPECint92 (see Figure 1). As soon as greater speed is
achieved, new applications emerge that demand even more.
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Figure 1 Expected processor performance increase.

With this gargantuan appetite for more computing power at lower cost,
can current computer architecture satisfy us? Can present technology
evolve at this rate ad infinitum? When will its limitations be reached?

Current technology is at an exponential rate of performance/cost in-
crease, which in nature means, first, a rapid increase in exponential form
and then, before an uncontrollable state is reached, saturation, i.e., no fur-
ther increase. Thus, being in the exponential phase, advances in technology
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should start slowing down at the start of the next millenium and should soon
reach a plateau beyond which no significant performance/cost improve-
ments can be achieved with the same processor architecture. Therefore,
researchers are looking into new, more efficient, processor architectures.
For example, the simple “pipeline” architecture of microprocessors used
in personal computers has been replaced by the CISC (complex instruction
set computer), which, in turn, is being replaced by the RISC (reduced in-
struction set computer) architecture, which itself will be soon replaced by
superscalar and multiprocessor computer architectures. Each new archi-
tecture is the next optimum and, once all possible architectures have been
explored, sooner or later a plateau of performance-to-cost will be reached,
beyond which significant optimization cannot be achieved.

This forecasted plateau by no means implies the death of the micro-
processor. The next century will demand high-performance processors
coupled with sophisticated computing algorithms and techniques, such as
genetic algorithms and evolutionary programming, and myriads of sophis-
ticated applications will be seen. Therefore, the scientific community is
searching not only the next generation of computing but also for the next
breed of processing machines—small machines many times faster and
more potent than those yet developed that can rapidly process massive
amounts of data and that will figuratively learn, listen, and “think.” But
to create this “brainlike machine,” revolutionary theories, technology, and
architectures, such as the following, are required:

e Theories that explain what intelligence is, how it processes impre-
cise information, and stores, recalls, associates, correlates, infers,
and extracts precise values

e Technology that, with a relatively small amount of circuitry, can
process vast amounts of imprecise information in a very short
time and provide precise results

e Architectures that encompass the new theories and technologies

THE ENGINEERING OF THE BRAIN

Biologists have studied biological neural networks for many years. The
human brain is such a network. Discovering how the brain works has been
an ongoing effort that started more than 2000 years ago with Aristotle and
Heraclitus and has continued with the work of Ramon y Cajal, Colgi, Hebb,
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and others. The better we understand the brain, the better we can emulate
it and build artificial “thinking machines” and “repair” biological damage
that leads to brain disorders.

As information about the functions of the brain was accumulated, a
new technology emerged and the quest for an artificial neural network
started. The brain processes information superquickly and superaccurately.
It can be trained to recognize patterns and to identify incomplete patterns.
Moreover, the trained network performs even if certain neurons fail. For
example, even in a noisy football stadium with many thousands of people,
we can still recognize a friend from afar or distinguish voices from the
pandemonic noise. This ability of the brain (signal processing) to recog-
nize information, literally buried in noise, and retrieve it correctly is one
of the amazing processes that we wish could be duplicated by machine.
Hence, if we manage to build a machine—an artificial neural network—
that emulates the human brain, even at only 0.1% of its performance, we
still have an extraordinary information processing and controlling machine.
These training and learning features make neural networks suitable for ap-
plications in signal processing (image, speech, or data), control (robotics,
power systems, communications systems, intelligent automotive vehicles),
and many other fields.

Artificial neural networks made a rapid transition from the cognitive
and neurobiology field to engineering with the pioneering work of McCul-
lough and Pitts, Rosenblatt, Widrow, Kohonen, Grossberg and Carpenter,
Hopfield, Werbos, Anderson, and many others, who developed paradigms
that are still applied today. Engineers from all disciplines (such as hard-
ware, software, systems, and materials) are working on artificial neural
networks.

A WORLD OF FUZZY THINKING

Parallel to the development of neural network theory, fuzzy theory or fuzzy
logic emerged, with the pioneering work of Lotfi Zadeh, and immediately
drew the attention of those technologists who had a special interest in
artificial neural networks.

What is fuzzy theory? Why is the term fuzzy used? “Fuzziness” is
found in our decisions, in our thinking, in the way we process information,
and, particularly, in our language; statements can be unclear or subject to
different interpretation. Phrases like “see you later,” “a little more,” or “I
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don’t feel very well” are fuzzy expressions. The fuzziness stems from the
different interpretations or perceptions we give to “later,” “a little more,”
and “very well.” For example, “later” for fast-phenomena engineers may
be on the order of nanoseconds, but for paleontologists it may be on the
order of thousands of years. The order of magnitude is relative; therefore,
if some fuzzy units are used, one should look at it within its context and
find a point of reference and a measuring unit.

Occasionaly, fuzzy statements indicate relative units and subunits that
do not indicate absolute units. Consider this example: “Runner A is fast,”
“runner B is faster than A,” and “runner C is slower than B.” We make
two observations: Fuzzy statements may establish taxonomy (B is faster
than A, and C is slower than B) or ambiguity (it is not clear if A is faster
than C) and there is no measure of the speed of A, B, or C. The statement
“George is very tall” is fuzzy because there is no reference measurement.
On a basketball team with an average height of 6 ft 2 in, “very tall” most
likely means taller than 6 ft 2 in. To the average person, “very tall” often
means taller than 5 ft 8 in, often but not necessarily 6 ft 2 in.

Fuzziness is often confused with probability. A statement is probabilis-
tic if it expresses a likelihood or degree of certainty or if it is the outcome of
clearly defined but randomly occurring events. For example, the statement
“There is a 50/50 chance that I'll be there” is purely probabilistic. Prob-
ability itself can have some degree of fuzziness. In the statement “Most
likely I'll be there,” all odds have been mentally weighed and some de-
gree of certainty or probability has been expressed. On the other hand, the
statement “I may be there” expresses complete uncertainty, undecidability,
and, hence, fuzziness.

CRISP VERSUS FUZZY LOGICS

You are probably familiar with logic that has well-defined decision levels
or thresholds (binary, multivalue). Boolean or binary logic is based on
two crisp extremes—yes—no or 1-0. Yes or no is an answer beyond doubt.
Trivalent logic is a logic of three definite answers, such as empty—half full-
full or 0—0.5—1. The binary numbers 1 or 0, or 1, 0.5, O in trivalent logic
represent normalized thresholds. Similarly, the multivalue logic has many
well-defined threshold levels.

Fuzzy logic, however, has unclear thresholds. For example, if we
take the trivalent logic and fuzzify it (i.e., change the crisp thresholds to
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obscure ones), then the values of the thresholds can be stated as a range
of values. The crispness of the numbers 0, 0.5, and 1 may be replaced by
“from 0 to about 0.4,” “from about 0.2 to about 0.8,” and “from about 0.6
to 1,” respectively. For example, if you look at three distinct dots through
a well-focused camera lens, you will see the dots with crisp perimeters. If
the image is out of focus, however, the dots become unclear and “fuzzy,”
perhaps overlapping each other. This action is termed fuzzification and in
fuzzy control systems is routinely done.

Fuzzy logic has been applied to military intelligence machines, the
stock market, and even dishwashers. In communications, it has been used
on the systems level and in signal processing. On the systems level, fuzzy
logic applications determine the best parameter values for call switching,
call routing, system reconfiguration, and so on. In signal processing, fuzzy
logic applications determine the degree of the fuzzified received signal (dis-
tortions due to environmental variations, electrical interferences, medium
mismatches, and other) and then “defuzzify” the signal. In a nutshell,
fuzzy logic is a powerful tool for the intelligent retrieval of nonstatistical,
ill-defined information in static, sequential, and real-time applications.

FUZZY AND NEURAL NETWORKS

Artificial neural networks and fuzzy logic work together, artificial neural
networks classify and learn rules for fuzzy logic and fuzzy logic infers
from unclear neural network parameters. The latter is a network with
fast learning capabilities that produces intelligent, crisp output from fuzzy
input and/or from fuzzy parameters and avoids time-consuming arithmetic
manipulation.

Incorporating fuzzy principles in a neural network gives more user
flexibility and a more robust system. Fuzziness in this case means more
flexibility in the definition of the system; boundaries may be described
more generally, not crisply; inputs may be described more vaguely, yet
better control may be obtained. The network itself may be fuzzy, not well
defined, and able to reconfigure itself for best performance. The power of
such machines may be illustrated with the following “gedanken” examples.

Visualize a machine that has learned to analyze scenery, animals, other
machines, and other items. A user describes a vague scene in terms of
features such as “something like a tree, about here” and “something like
an animal with four legs and a long tail and so tall, there,” and so on. Then
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the machine draws a three-dimensional landscape with a tree and a dog
nearby (and perhaps a mountain in the background, with a lake). Then the
user may instruct the machine to make corrections to this scene, again in
vague language, and the machine immediately projects a three-dimensional
scene, very similar to the one the user had in mind. As all that is done, a
train with a whistling sound may be crossing the scene (if the parameters
are set right) and nearby a frightened bird flies away.

Imagine a machine that is instructed to design a new three-dimensional
machine, based on some approximate specifications. Our gedanken ma-
chine designs a model from the vague specifications, simulates the cre-
ated machine, makes corrections on the model, and, if the corrected one
performs as expected, manufactures the first prototype—all in just a few
minutes!

WHERE ARE FUZZY NEURAL NETWORKS
HEADING?

Fuzzy logic follows the same path as Boolean and multiple value logic.
Initially, binary logic started as a linguistic set of statements, such as if A =
B,and if B = C, thenis A = C? Then mathematical notation translated
the linguistic statements into equations and theories were developed that
are taught today. These theories have been applied successfully in the
development of many logical applications.

Fuzzy logic also started as a linguistic set of statements. For example,
if A is taller than B, B is shorter than C, what is A with respect to C?
A number of mathematical theories can be found in the literature. Thus,
we may make a reasonable extrapolation and deduce that fuzzy logic will
prove itself as binary logic did. The fusion of fuzzy logic and neural net-
works combines the best of each. Fuzzy concepts fused with “thinking”
promise superior technology. These claims are validated by various inte-
grated circuits, fuzzy controllers for general applicability, and applications
for automobile engine control, robot control, cameras (film and video),
appliances, and the military. In addition to hardware solutions, numer-
ous “fuzzy algorithmic solutions” have been applied in communications,
signal processing (speech, image), and other areas. The number of compa-
nies banking on fuzzy logic is growing rapidly. Many significant American,
European, and Asian-Pasific companies have announced products or are
exploring and advancing fuzzy logic for potential applicability in their own
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products (see Chapter 6 for examples). In the near future we will see ap-
plications that encompass algorithmic fuzzy logic, fuzzy neural networks,
and combinations of fuzzy and/or neural networks with high-performance
MiCroprocessors.

OBJECTIVES

The objectives of this text are simple and crisp: to provide a simplified
yet comprehensive description of the concepts and potential applications
of neural networks and fuzzy logic, to give an insight into fuzzy neural
networks, and to demonstrate their applicability through examples.

Chapter 1 is an overview of biological neural networks. Specifically,
[ briefly describe the physiology of the neuron and neural networks. The
intent is to sketch out the amazing microcosm of live neurons, including
their function and organization. Chapter 2 describes concepts of artificial
neural networks, most of which come from the biological and behavioral
sciences. Chapter 3 provides a tutorial of the most popular paradigms and
a brief description of several others. The first part of Chapter 4 provides a
tutorial of fuzzy logic set forth by basic examples, and the second part is
a more advanced treatment of temporal fuzzy logic, yet all are simplified
to the greatest degree possible. Chapter 5 describes how fuzzy logic and
neural networks are combined to build a fuzzy neural network, and Chap-
ter 6 describes applications with neural networks, fuzzy logic, and fuzzy
neural networks.

The material is organized so that it will serve both the reader who
wants a simple introduction to the subject and the reader who is at an
undergraduate level. To achieve this, we have followed four rules:

e The reader is not a biologist or a mathematician.

e The language has been simplified to eliminate unecessary jargon
yet retain necessary terminology.

e Mathematical description has been reduced to basics and those
sections that involve extensive mathematics have been segregated
in a description and math section. Thus, the reader may skip the
math section at the first reading without any loss of understanding.

e Mathematical notation has been simplified. In a few cases, for
simplicity, vectorial notation is used. Simple numerical examples
demonstrate the math applicability and clarify any difficulties.



Preface

CONTENTS

Acknowledgments

Introduction

A New Breed of Processor: The Brain

The Engineering of the Brain

A World of Fuzzy Thinking

Crisp versus Fuzzy Logics

Fuzzy and Neural Networks

Where Are Fuzzy Neural Networks Heading?

Objectives

Biological Neural Networks

1.1 Neuron Physiology

1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.1.6
1.1.7
1.1.8
1.1.9
1.1.10
1.1.11
1.1.12

The Soma

Cell Membrane Structure
Proteins: The Cell’s Signature
Membrane Proteins

Membrane Strength

The Sodium Pump: A Pump of Life?
Resting Potential

Action Potential: Cell Firing
The Axon: A Transmission Line
The Synapse

The Synapse: A Biocomputer
Types of Synapses

xiii
Xv
xvii

Xvii
XiX
XX
XX1
XXii
XXIiil
XX1V

—D

SO 00NN nh b=

11
12
14
15

vii



viii

1.2
1.3
1.4

1.5
1.6

1.1.13
1.1.14
L.LLS
1.1.16
1.1.17
1.1.18

The Developing Neuron: Forming Networks
Neuronal Specialization

The Cell’s Biological Memory

Weighting Factor

Factors Affecting Potassium-Ion Flow
Firing, in a Nutshell

Neuronal Diversity
Specifications of the Brain
The Eye’s Neural Network

1.4.1
1.4.2
143

1.44

1.4.5
1.4.6

Retina Structure

Rods and Cones

From Photons to Electrons: A Photochemical
Chain Reaction

Organization and Communication of the
Retina Neural Network

Image Processing in the Retina

Visual Pathways

Areas for Further Investigation
Review Questions
References

2 Artificial Neural Networks: Concepts

2.1 Neural Attributes

2.2
23
24

2.5
2.6
2.7

2.1.1
2.1.2

Artificial Neural Networks
Same Mathematics Again!

Modeling
Basic Model of a Neuron
Learning in Artificial Neural Networks

24.1
24.2
243
244
245
24.6
2.4.7

Supervised Learning
Unsupervised Learning
Reinforced Learning
Competitive Learning
The Delta Rule
Gradient Descend Rule
Hebbian Learning

Characteristics of ANNs
Important ANN Parameters
Artificial Neural Network Topologies

2.7.1
2:7:2

Modeling ANNs
ANN Learning and Program

Contents

15
17
17
18
18
18
19
21
22
22
23

24

25
27
29
31
33
34

37

37
38
38
39
39
42
43
44
45
45
46
46
46
47
48
49
49
50



Contents

2.8 Learning Algorithms
2.9 Discrimination Ability
29.1 Linearly Separable ANNs
2.9.2  Multilinear ANNs
2.9.3  Nonlinear Separable ANNs
2.10 ANN Adaptability
2.11 The Stability-Plasticity Dilemma
2.12 Review Questions
References

3 Neural Network Paradigms

3.1 McCulloch-Pitts Model
3.2 The Perceptron
3.2.1  Original Perceptron
3.2.2  Perceptron Learning Procedure
3.2.3  Logic Operations with Simple-Layer
Perceptrons
3.24  Multilayer Perceptron
3.2.5 Delta Learning Algorithm
3.3 ADALINE and MADALINE Models
33.1 ADALINE
33.2 MADALINE
3.4 Winner-Takes-All Learning Algorithm
3.5 Back-Propagation Learning Algorithm
3.5.1  Learning with the Back-Propagation
Algorithm
3.5.2  Mathematical Analysis
3.5.3  Applications
3.54  Criticism
3.6 Cerebellum Model Articulation Controller
(CMAC)
3.7 Adaptive Resonance Theory (ART) Paradigm
3.7.1  The ART Algorithm
3.8 Hopfield Model
3.8.1  Mathematical Analysis
3.8.2  The Hopfield Learning Algorithm
3.8.3  Discrete-Time Hopfield Net
3.9 Competitive Learning Model

ix

52
53
54
56
57
58
58
59
60

61

62
63
63
66

68
68
70
72
72
74
74
75

76
78
80
81

82
82
85
86
87
89
90
90



