Fourth Edition

Software Engineering
with JAVA

BT

- JavaifE S|
(Z3ChR - SH4hR)

(3() Stephen R. Schach #
i & k. xr B K F

Mo T RRi |
hina Machine Pre il

TP AP

T 1S
Java i3I

(3%)

Software Engineering with JAVA
(Fourth Edition)

(#£) StephenR. Schach
GE/&L R4 X %)

LA T kY AR #

China Machine Press

Eﬁ?w McGraw-Hill

Stephen R. Schach: Software Engineering with JAVA.

Copyright © 1998 by The McGraw-Hill Companies, Inc. All rights reserved. Jointly
published by China Machine Press/McGraw-Hill. This edition may be sold in the People’s
Republic of China only. This book cannot be re-exported and is not for sale outside the People” s
Republic of China.

RISBN 007-1168729

A B HESCHENIR i McGraw-Hill 23 5H%BOILEE Tk S RRRE 7 o B ARl 355 P b K HE B R
11, REWRETVFT, BRLMERT R, LIS R4 b BT .
REUTTA, AL

ABENFILS: EF: 01-99-0109

BB B (CIP) 318

B LR MJavail sfok: 36 S0/COWI A (Schach, S. R)Z, — FEEIRR. —Abat: LML
AR, 1999.3

(HBEHLBE M)

ISBN 7-111-06714-2

LA O ML OBEETR - A - %3 Olavaif & - BFBIT - 33
IV TP311 5

i AR AR B SR CTP B = (1999) 5502379

R # THILEUR AT T K22 Mssciy 100037)
EYCT-EREREDR T CIM - 971 Dh bk Tk A

199943 F 5% Ui Lk Bk

787mm x 1092mm 1/16 - 39.75E15k

E[%: 0001-5000)

SEM: 51.005¢

LA, anfwesl. @50, Biol, mARI TR

PREFACE

Java is the premier language of the World Wide Web and hence of the Intemnet and the Information Super
Highway. It is also the programming language du jour, the darling of the columnists in computer newspapers
and e-zines (online magazines). Furthermore, as a consequence of the vast economic potential of the
Information Super Highway, Java is probably the best known programming language among investors who
may know nothing about computers; the name ‘‘Java™ appears in The Wall Street Journal nearly as
frequently as “‘pork-belly futures” and “seiling short against the box.”

These are most definitely not the reasons why I chose to bring out a Java version of Classical and Object-
Oriented Software Engineering, Third Edition. On the contrary, the reason why [selected Java is that Java
embodies the principles of software engineering. This is described in greater detail in the epilogue of this
book, entitled “Java: A Case Study in Software Engineering.”

Java is much more than just a language for World Wide Web applets (small application programs) that
can be accessed over the Web and then run on one’s own computer. On the contrary, Java is a general-purpose
programming language that can be used for software for all kinds and, in addition, on the Web.

At the end of each chapter in the Third Edition of Classical and Object-Oriented Software Engineering
there is a continuing major Case Study implemented in C++. In this book, that Case Study is implemented in
Java, demonstrating that Java can be used for serious software. Certain of the problems in this book require
the student to modify the Case Study in some way. The source code of the Case Study (Appendixes C and I) is
available by anonymous ftp from ftp.vuse.vanderbilt.edu (address 129.59.100.10) in directory /pub
/Software_Eng/Java, or on a diskette from Richard D. Irwin, 1333 Burr Ridge Parkway, Burr Ridge, IL
60521.

Also, students are required to use Java to implement the 14-part Term Project of this book. The detailed
solution of the Term Project in the Instructor’s Manual (available from Richard D. Irwin, at the address given
at the end of the previous paragraph) is an additional demonstration that Java is indeed a general-purpose
programming language.

Acknowledgments

1 am grateful to Rob Bland of IBM, co-author of the Instructor’s Manual for this
book, for his many helpful and insightful suggestions, especially regarding Chap-
ter 6.

I should also like to thank the many individuals at Richard D. Irwin who have
worked on this book. I am especially grateful to senior sponsoring editor Betsy Jones
and senior project supervisor Becky Dodson.

Finally, I thank my family for their encouragement and unquestioning support
throughout the writing of this book. After five other books, they fully appreciate that

m

PREFACE

I write best when I am alone in my study, even though I would far rather be with

them. As always, I lovingly dedicate this book to my wife, Sharon, and my children,
David and Lauren.

Stephen R. Schach

PREFACE TO THE THIRD EDITION OF
CLasSICAL AND OBJECT-ORIENTED
SOFTWARE ENGINEERING

The Second Edition of Software Engineering was published in 1993. At that time there were two major
approaches to software development, namely the structured paradigm and the object-oriented paradigm.
The structured paradigm was a tried and trusted approach, but it was not always successful. On the other
hand, the object-oriented paradigm seemed promising, but no more than that. The Second Edition
reflected this attitude. The book certainly included material on objects and on object-oriented design, but
at that time it was premature to stress a new paradigm that had not been proven to be superior to the
structured paradigm.

In the 3 years since the Second Edition was published, evidence has been steadily mounting that the
object-oriented paradigm is superior to classical software engineering approaches. In fact, a textbook
exclusively devoted to object-oriented software engineering would now be justified.

If that is so, then why is this book entitled Classical and Object-Oriented Software Engineering? Why
are the classical techniques even mentioned? There are two reasons for this.

First, this book is a textbook at the senior undergraduate or first year graduate level, and it is likely that
many students who use this book will be employed by organizations that still use classical software
engineering techniques. Furthermore, even if an organization is now using the object-oriented approach for
developing new software, existing software still has to be maintained, and this existing software is not object-
oriented. Thus, excluding classical material would not be fair to students using this text.

The second reason why both classical and object-oriented techniques are included is that it is impossible
to understand why object-oriented technology is superior to classical technology without fully understanding
classical approaches and how they differ from the object-oriented approach. Thus, the classical and object-
oriented approaches are not merely both described in this book, they are compared, contrasted, and analyzed.
This ensures that the reader will fully appreciate why so many software professionals feel that the object-
oriented approach is superior to classical approaches. Furthermore, if the student is employed at an
organization that has not yet adopted object-oriented technology, he or she will be able to advise that
organization regarding both the strengths and the weaknesses of the'new paradigm.

Thus, the major change in this edition is that the object-oriented paradigm is emphasized. Objects are
introduced in the very first chapter and are discussed throughout the book. Chapter 6, entitled “Introduction
to Objects,” provides clear definitions of basic object-oriented concepts such as classes, objects, inheritance,
polymorphism, and dynamic binding (the chapter is an extended version of Chapter 9 of the second edition).
There is a new chapter on object-oriented analysis, a topic that was not covered in the second edition.
Particular attention is also paid to object-oriented life-cycle models, object-oriented design, management
implications of the object-oriented paradigm, and to the testing and maintenance of object-oriented software.
Metrics for objects and cohesion and coupling of objects are also covered. In addition, there are many briefer
references to objects, usually only a paragraph or even a sentence in length. The reason is that the object-

A%

PREFACE

oriented paradigm is not just concerned with how the various phases are performed,
but rather permeates the way we think about software engineering. As a result,
object-oriented technology pervades this book.

The software process is still the concept that underlies the book as a whole. In
order to control the process, we have to be able to measure what is happening to the
project. Accordingly, the stress on metrics is maintained.

The third edition continues and extends other themes of the previous editions.
For instance, the second edition contained a discussion of the Capability Maturity
Model (CMM) and how it was being used to improve the software process and
thereby boost productivity. In this edition, the ISO 9000-series is also discussed and
is contrasted with the CMM.

There have been a number of developments within the area of Computer-Aided
Software Engineering (CASE). On the one hand, some organizations have become
disillusioned with CASE, whereas others have introduced CASE and have observed
amarked improvement in areas such as productivity, software quality, and employee
morale. This book gives a balanced view of CASE and explains why organizations
have had such differing experiences with it. CASE tools for the object-oriented
paradigm are also included.

Topics that continue to be emphasized throughout the book include the importance
of maintenance and the need for complete and correct documentation at all times. The
importance of software reuse is still stressed, but now within the context of objects.

The book is still essentially language-independent. The few code examples are
in C++. To be more precise, wherever possible the “C subset of C++" has been used.
In addition, care has been taken to use as few C idioms as possible so that the
material can also be understood by readers with little or no knowledge of C. The only
chapter where C++ (rather than C) is employed is Chapter 6, and detailed explana-
tions of specific C++ constructs have been provided there. In addition, the implemen-
tation of the Case Study in Appendix I uses some C++ constructs.

With regard to prerequisites, it is assumed that the reader is familiar with one
high-level programming language such as Pascal, C, BASIC, COBOL, or FOR-
TRAN. Although most of the examples are in C, no previous knowledge of C is
needed. In addition, the reader is expected to have taken a course in data structures.

How the Third Edition Is Organized

The order of the chapters reflects the order of the phases of the software life cycle.
Specifically, Part Two of this book (Chapters 7 through 14) consists of a phase-by-
phase treatment of the software life cycle, starting with the requirements phase and
ending with the maintenance phase. In order to prepare the reader for this material,
Part One contains the background material needed to understand the second part of
the book. For example, Part One introduces the reader to CASE, metrics, and testing
because each chapter of Part Two contains a section on CASE tools for that phase, a
section on metrics for that phase, and a section on testing during that phase.

PREFACE

In order to ensure that the key software engineering techniques of Part Two are
truly understood, each is presented twice. First, whenever a technique is introduced,
it is illustrated by means of the elevator problem. The elevator problem is the correct
size for the reader to be able to see the technique applied to a complete problem, and
it has enough subtleties to highlight both the strengths and weaknesses of the
technique being taught. Then, at the end of each chapter there is a continuing major
Case Study. A detailed solution to the Case Study is presented. The material for each
phase of the Case Study is generally too large to appear in the chapter itself. Instead,
only key points of the solution are presented in the chapter itself and the complete
material appears at the end of the book (Appendices C through I).

The Problem Sets

In this edition, there are four types of exercises. First, as before, at the end of each
chapter there are a number of exercises intended to highlight key points. These
exercises are self-contained; the technical information for all of the exercises can be
found in this book.

Second, there is a software term project. It is designed to be solved by students
working in teams of three, the smallest number of team members that cannot confer
over a standard telephone. The term project comprises 14 separate components, each
tied to the relevant chapter. For example, design is the topic of Chapter 11, so in that
chapter the component of the term project is concerned with designing the software
for the project. By breaking a large project into smaller, well-defined pieces, the
instructor can monitor the progress of the class more closely. The structure of the
term project is such that instructors may freely apply the 14 components to any other
project they choose.

Because this book is written for use by graduate students as well as upperclass
undergraduates, the third type of problem is based on research papers in the software
engineering literature. In each chapter an important paper has been chosen; wherever
possible, a paper related to object-oriented software engineering has been selected.
The student is asked to read the paper and to answer a question relating to its
contents. Of course, the instructor is free to assign any other research paper; the “For
Further Reading” section at the end of each chapter includes a wide variety of
relevant papers.

New to this edition is the fourth type of problem, namely, problems related to the
Case Study. A number of instructors have told me that they believe their students
learn more by modifying an existing product than by developing a product from
scratch. Many senior software engineers in the industry with whom I have discussed
the issue agree with that viewpoint. Accordingly, each chapter in which the Case
Study is presented has at least three problems that require the student to modify the
Case Study in some way. For example, in one chapter the student is asked to redesign
the Case Study using a different technique from the one used for the Case Study. In
another chapter, the student is asked what the effect would have been of performing
the steps of object-oriented analysis in a different order. In order to make it easy to
modify the source code of the Case Study (Appendices C and I), the source code is

PREFACE

available by anonymous CD from ftp.vuse.vanderbilt.edu (129.59.100.10) in
directory /pub/Software_Eng/Third_Edition, or on a diskette from Richard D.
Irwin, 1333 Burr Ridge Parkway, Burr Ridge, Illinois 60521.

The Instructor’s Manual contains detailed solutions to all the exercises, as well
as to the term project. The Instructor’s Manual is also available from Richard D.
Irwin, and so are transparency masters for all the figures in this book.

Acknowledgments

1 am indebted to those who reviewed this edition, including:

Dan Berry
The Technion

Doug Bickerstaff

Eastern Washington University

Richard J. Botting

California State University-San Bernardino
Buster Dunsmore

Purdue University

E.B. Fernandez
Florida Atlantic University

Donald Gotterbam

East Tennessee State University
Greg Jones

Utah State University

Peter E. Jones
University of Western Australia-Nedlands, Perth

David Notkin

University of Washington

Hal Render

University of Colorado—Colorado Springs
Bob Schuerman

State College, Pennsylvania
K.C. Tai

North Carolina State University
Laurie Werth

University of Texas-Austin

Lee White

Case Western Reserve University

PREFACE

George W. Zobrist
University of Missouri-Rolla

Jeff Gray, co-author of the Instructor’s Manual for this edition, has made many
helpful suggestions. In particular, I thank him for his ideas regarding the Z specifica-
tion of Section 8.8.1. [am grateful to Saveen Reddy for his comments on Sections
6.4 through 6.6. 1 should also like to thank Keith Pierce, University of Minnesota,
Duluth, for his helpful suggestions regarding test plans. Some of the material of the
MSG Case Study, presented at the end of Chapters 7 through 13 and in Appendices C
through 1, has been taken from the Term Project in the Second Edition of this book
and from the Instructor’s Manual for the Second Edition (co-authored by Santhosh
R. Sastry).

I should like to single out three individuals at Richard D. Irwin to whom I am
especially grateful. I thank senior sponsoring editor Betsy Jones, project editor
Becky Dodson, and copy editor June Waldman for their many valuable contributions
to this book.

Finally, I thank my family for their wholehearted support and encouragement
throughout the writing of this edition. As with all my previous books, have done my
utmost to ensure that family commitments took precedence over writing. However,
when deadlines loomed, this was sometimes not possible. At such times, they were
always understanding, and for this I am most grateful. As always, I dedicate this
book to my wife, Sharon, and my children, David and Lauren, with love.

Stephen R. Schach

BRIEF CONTENTS

Prologue 1 CHAPTER 9
Object-Oriented
PART 1 Analysis Phase 268
Introduction to the CHAPTER 10
Software Process 3 Planning Phase 291
CHAPTER 1 CHAPTER 1N

Scope of Software Engineering 5 Design Phase 322

CHMAPTER 12

CHAPTER 2 .

The Software Process and Implementation Phase 368
Its Problems 30 CHAPTER 13

Implementation and

CHAPTER 3 Integration Phase 441

Software Life-Cycle Models 53

CHAPTER 4

Stepwise Refinement, CASE, and .
Other Tools of the Trade 82 Epilogue 483

CHAPTER 14
Maintenance Phase 465

CHAPTER 3

\ ; Appendices
Testing Principles 110

APPENDIX A
CHAPTER 6

Introduction to Objects 140 Osbert Oglesby, Art Dealer 491
APPENDIX B

PART 2 Software

The Phases of the Engineering Resources 494

Software Process 192 APPENDIX ¢

MSG Case Study:

CHAPTER 7 Rapid Prototype 496
Requirements Phase 197

APPENDIX D

CHAPTER 8 MSG Case Study: Structured
Specification Phase 222 Systems Analysis 509

BRrIEF CONTENTS

APPENDIX E
MSG Case Study:
Object-Oriented Analysis 513

APPENDIX F
MSG Case Study: Software Project
Management Plan 514

APPENDIX G
MSG Case Study: Design 519

APPENDIX H
MSG Case Study: Black-Box
Test Cases 539

APPENDIX 1
MSG Case Study: Source
Code 542

Bibliography 3581
Author Index 605
Subject Index 608

CONTENTS

Prologue 1

PART 1

Introduction to the
Software Process 3

CHAPTER 1
Scope of Software Engineering 5

1.1 Historical Aspects 6

1.2 Economic Aspects 9

1.3 Maintenance Aspects 10

1.4 Specification and Design Aspects 14
1.5 Team Programming Aspects 16
1.6 The Object-Oriented Paradigm 17
1.7 Terminology 22

Chapter Review 24

For Further Reading 25

Problems 26

References 27

CHAPTER 2
The Software Process and
Its Problems 30

2.1 Client, Developer, and User 32
2.2 Requirements Phase 33

2,21 Requirements Phase Testing 34
2.3 Specification Phase 35

2.3.1 Specification Phase Testing 36
2.4 Planning Phase 36

24.1 Planning Phase Testing 37
2.5 Design Phase 38

2.5.1 Design Phase Testing 39
2.6 Implementation Phase 39

2.6.1 Implementation Phase Testing 39
2.7 Integration Phase 40

211 Integration Phase Testing 40
2.8 Maintenance Phase 41

2.8.1 Maintenance Phase Testing 42

2.9 Retirement 42

2.10 Problems with Software Production:
Essence and Accidents 43
2.10.1 Complexity 44
2.102 Conformity 46
2103 Changeability 47
2.104 Invisibility 48
2.10.5 No Silver Bullet? 49

Chapter Review 50

For Further Reading 50

Problems 51

References 52

CHAPTER 3
Software Life-Cycle Models 53

3.1 Build-and-Fix Model 53
3.2 Waterfall Model 54
321 Analysis of the Waterfall Model 57
3.3 Rapid Prototyping Model 59
331 Integrating the Waterfall and Rapid
Prototyping Models 61
34 Incremental Model 61
34.1 Analysis of the Incremental
Model 63
3.5 Spiral Model 66
351 Analysis of the Spiral Model 70
3.6 Comparison of Life-Cycle Models 71
3.7 Capability Maturity Mode] 71
3.8 ISO9000 75
Chapter Review 76
For Further Reading 77
Problems 78
References 78

CHAPTEIR &
Stepwise Refinement, CASE, and
Other Tools of the Trade 82

4.1 Stepwise Refinement 82
4.1.1 Stepwise Refinement Example 83

4.2
43

44
4.5

4.6

4.7
48

49

CONTENTS

Cost-Benefit Analysis 89
CASE (Computer-Aided Software
Engineering) 90

43.1 Taxonomy of CASE 90
Scope of CASE 92

- Software Versions 96

45.1 Revisions 96

45.2 Variations 97

Configuration Control 98

46.1 Configuration Control during Product
Maintenance 100

46.2 Baselines 101

463 Configuration Control during Product
Development 101

Build Tools 102

Productivity Gains with CASE

Technology 103

Software Metrics 103

Chapter Review 105
For Further Reading 105
Problems 106
References 108

CHAPTER 5
Testing Principles 110

5.1

52

53
54

5.5

Quality Issues 111

5.1.1 Software Quality Assurance 111

5.1.2 Managerial Independence 112

Nonexecution-Based Testing 113

5.2.1 Walkthroughs 113

522 Managing Walkthroughs 114

523 Inspections 115

524 Comparison of Inspections and
Walkthroughs 117

525 Metrics for Inspections 118

Execution-Based Testing 118

What Should Be Tested? 119

54.1 Utility 120

542 Reliability 120

543 Robustness 121

544 Performance 121

5.4.5 Correctness 122

Testing versus Correctness Proofs 124

5.5.1 Example of a Correctness Proof 124

55.2 Correctness Proof Case Study 128

553 Correctness Proofs and Software
Engineering 129

5.6 Who Should Perform Execution-Based
Testing? 131

5.7 When Testing Stops 133

Chapter Review 134

For Further Reading 134

Problems 135

References 137

CHAPTER 6
Introduction to Objects 140

6.1 What Is a Module? 140

6.2 Cohesion 144
6.2.1 Coincidental Cohesion 145
6.22 Logical Cohesion 145
6.2.3 Temporal Cohesion 146
6.24 Procedural Cohesion 147
6.25 Communicational Cohesion 148
6.2.6 Informational Cohesion 148
6.2.7 Functional Cohesion 149
6.2.8 Cohesion Example 150

6.3 Coupling 151
6.3.1 Content Coupling 151
632 Common Coupling 151
633 Control Coupling 154
6.3.4 Stamp Coupling 154
6.3.5 Data Coupling 155
6.3.6 Coupling Example 156

6.4 Data Encapsulation 157

6.4.1 Data Encapsulation and Product
Development 161
6.4.2 Data Encapsulation and Product
Maintenance 163
6.5 Abstract Data Types 166
6.6 Information Hiding 168
6.7 Objects 171
6.8 Polymorphism and Dynamic Binding 175
6.9 Cohesion and Coupling of Objects 177
6.10 Reuse 178
6.10.1 Impediments to Reuse 179
6.11 Reuse Case Studies 180

6.11.1 Raytheon Missile Systems
Division 180

6.11.2 Toshiba Software Factory 182

6.11.3 NASA Software 183

6.114 GTE Data Services 184
6.11.5 Hewlett-Packard 184
6.12 Reuse and Maintenance 185
6.13 Objects and Productivity 186
Chapter Review 188
For Further Reading 188
Problems 189
References 191

PART 2
The Phases of the
Software Process 195

CHAPTIR 7
Requirements Phase 197

7.1 Requirements Analysis Techniques 198

7.2 Rapid Prototyping 199

7.3 Human Factors 201

7.4 Rapid Prototyping as a Specification
Technique 203

7.5 Reusing the Rapid Prototype 205

7.6 Other Uses of Rapid Prototyping 207

7.7 Management Implications of the Rapid
Prototyping Model 208

7.8 Experiences with Rapid Prototyping 209

7.9 Joint Application Design 211

7.10 Comparison of Requirements Analysis
Techniques 211

7.11 Testing during the Requirements Phase 212

7.12 CASE Tools for the Requirements
Phase 212

7.13 Metrics for the Requirements Phase 213

7.14 MSG Case Study: Requirements Phase 214

7.15 MSG Case Study: Rapid Prototype 216

Chapter Review 217

For Further Reading 218

Problems 219

References 220

CHAPTER 8
Specification Phase 222

8.1 The Specification Document 222

CONTENTS). 4%

8.2 Informal Specifications 224

8.2.1 Case Study: Text Processing 225
8.3 Structured Systems Analysis 226

8.3.1 Sally’s Software Shop 226
8.4 Other Semiformal Techniques 234
8.5 Entity-Relationship Modeling 235
8.6 Finite State Machines 237

8.6.1 Elevator Problem: Finite State

Machines 239

8.7 Petri Nets 244

8.7.1 Elevator Problem: Petri Nets 247
88 Z 250

88.1 Elevator Problem: Z 251

8.8.2 Analysis of Z 253

8.9 Other Formal Techniques 255

8.10 Comparison of Specification
Techniques 256
8.11 Testing during the Specification Phase 256
8.12 CASE Tools for the Specification
Phase 257
8.13 Metrics for the Specification Phase 258
8.14 MSG Case Study: Structured Systems
Analysis 258
Chapter Review 260
For Further Reading 261
Problems 262
References 264

CHAPTER 9
Object-Oriented
Analysis Phase 268

9.1 Object-Oriented versus Structured
Paradigm 268

9.2 Object-Oriented Analysis 270

9.3 Elevator Problem: Object-Oriented
Analysis 272
9.3.1 Class Modeling 272
9.3.2 Dynamic Modeling 275
933 Functional Modeling 278

9.4 Object-Oriented Life-Cycle Models 280

9.5 CASE Tools for the Object-Oriented
Analysis Phase 282

9.6 MSG Case Study: Object-Oriented
Analysis 283

XVI1 CONTENTS

Chapter Review 286
For Further Reading 286
Problems 288
References 289

CHAPTER 10
Planning Phase 291

10.1 Estimating Duration and Cost 291
10.1.1 Metrics for the Size of a
Product 293
10.12 Techniques of Cost Estimation 297
10.1.3 Intermediate COCOMO 299
10.1.4 Tracking Duration and Cost
Estimates 303

10.2 Components of a Software Project
Management Plan 303

10.3 Software Project Management Plan
Framework 305

10.4 IEEE Software Project Management
Plan 305

10.5 Planning of Testing 308

10.6 Planning of Object-Oriented Projects 310

10.7 Training Requirements 310

10.8 Documentation Standards 311

10.9 CASE Tools for the Planning Phase 312

10.10 Testing during the Planning Phase 315

10.11 MSG Case Study: Planning Phase 315

Chapter Review 315

For Further Reading 316

Problems 317

References 318

CHAPTER 11
Design Phase 322

11.1 Design and Abstraction 322

112 Action-Oriented Design 324

11.3 Data Flow Analysis 324
113.1 Data Flow Analysis Example 325
11.3.2 Extensions 329

11.4 Transaction Analysis 329

11.5 Data-Oriented Design 332

11.6 Jackson System Development 333
11.6.1 Overview of Jackson System

Development 333

11,62 Why Jackson System Development
Is Presented in This Chapter 335
11.6.3 Elevator Problem: Jackson System
Development 336
11.64 Analysis of Jackson System
Development 344
11.7 Techniques of Jackson, Warnier, and
Orr 345
11.8 Object-Oriented Design 346
11.8.1 Elevator Problem: Object-Oriented
Design 347
11.9 Detailed Design 350
11.10 Comparison of Action-, Data-, and
Object-Oriented Design 352
11.11 Difficulties Associated with Real-Time
Systems 353
11.12 Real-Time Design Techniques 354
11.13 Testing during the Design Phase 355
11.14 CASE Tools for the Design Phase 356
11.15 Metrics for the Design Phase 357
11.16 MSG Case Study: Object-Oriented
Design 358
Chapter Review 359
For Further Reading 361
Problems 363
References 364

CHAPTER 12
Implementation Phase 368

12.1 Choice of Programming Language 368
122 Fourth Generation Languages 372
12.3 Structured Programming 375
12.3.1 History of Structured
Programming 375
123.2 Why the goto Statement Is
Considered Harmful 377
124 Good Programming Practice 378
12.5 Coding Standards 383
12.6 Team Organization 385
127 Democratic Team Approach 387
12.7.1 Analysis of the Democratic Team
Approach 388
12.8 Classical Chief Programmer Team
Approach 388
12.8.1 The New York Times Project 390

129

12.10

1211
12.12

12.13
12.14

12.15

12.16

12.17
12.18

12.19
12.20
12.21

12.22
12.23
12.24

12.8.2 Impracticality of the Classical Chief
Programmer Team Approach 391

Beyond Chief Programmer and

Democratic Teams 392

Portability 396

12.10.1 Hardware Incompatibilities 396

12.10.2 Operating System

Incompatibilities 398

Numerical Software

Incompatibilities 398

12.104 Compiler Incompatibilities 399

Why Portability? 402

Techniques for Achieving Portability 404

12.12.1 Portable System Software 404

12.12.2 Portable Application Software 405

12.12.3 Portable Data 406

Module Reuse 407

Module Test Case Selection 407

12.14.1 Testing to Specifications versus
Testing to Code 408

12,14.2 Feasibility of Testing to
Specifications 408

12.143 Feasibility of Testing to Code

Black-Box Module-Testing

Techniques 411

12.15.1 Equivalence Testing and Boundary
Value Analysis 411

12.15.2 Functional Testing 413

Glass-Box Module-Testing

Techniques 414

12.16.1 Structural Testing: Statement,
Branch, anc¢ Path Coverage 414

12.16.2 Complexity Metrics 415

Code Walkthroughs and Inspections 418

Comparison of Module-Testing

Techniques 418

Cleanroom 419

Testing Objects 420

Management Aspects of Module-

Testing 423

12.21.1 When to Rewrite Rather Than
Debug a Module 424

Testing Distributed Software 425

Testing Real-Time Software 427

CASE Tools for the Implementation

Phase 429

12.10.3

409

CoNTENTS

12.25 MSG Case Study: Black-Box Test
Cases 429

Chapter Review 431
For Further Reading 431
Problems 433
References 435

CHAPTER 13
Implementation and
Integration Phase 441

13.1 Implementation and Integration 441
13.1.1 Top-Down Implementation and
Integration 442
13.1.2 Bottom-Up Implementation and
Integration 444
13.1.3 Sandwich Implementation and
Integration 445
13.1.4 Implementation and Integration of
Object-Oriented Products 446
13.1.5 Management Issues during the
Implementation and Integration
Phase 446
13.2 Testing during the Implementation and
Integration Phase 447
13.3 Integration Testing of Graphical User
Interfaces 447
134 Product Testing 448
13.5 Acceptance Testing 449
13.6 CASE Tools for the Implementation and
Integration Phase 450
13.7 CASE Tools for the Complete Software
Process 451
13.8 Language-Centered Environments 451
13.9 Structure-Oriented Environments 452
13.10 Toolkit Environments 452
13.11 Integrated Environments 452
13.11.1 Process Integration 453
13.11.2 Tool Integration 454
13.11.3 Other Forms of Integration 456
13.12 Environments for Business
Applications 456
13.13 Public Tool Infrastructures 457
13.14 Comparison of Environment Types 458
13.15 Metrics for the Implementation and

Integration Phase 458

