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FUNDAMENTAL PHYSICAL CONSTANTS

Speed of light in vacuum c
Avagadro’s number Ny
Gas constant R
Boltzmann’s constant (R/N4) k
Faraday’s constant F
Elementary charge 0
Mass of a proton m
Atomic mass unit AMU
Atmospheric pressure (sea level) P
Gravitational acceleration (sea level) ' g
Pi i 4

CONVERSION FACTORS

1[m] = 10? [em] = 10'°[A] = 39.370[in] = 3. 2808 [ft]

1[kg] = 10% [g] = 2.2046 [Iby] = 0.068522 [slug]

[K] = [°C] + 273.15 = (5/9) [°R]); [°R] = [°F] + 459.67

2.997 924 58 x 108
6.022 141 99 x10%
8.314 472

1.380 650 3 x10~23
9.648 534 15 x 10*
1.602 176 46 x10~"?
4.803 204 19 x10710
1.672 621 58 x107%
1.660 538 73 x10~%
1.013 25 x10°

9.806 55

3.141 592 65

1[m®] = 1073[L] = 1079 [cm®] = 35.315[ft}] = 264.17 [gal] (U.S.)

1[N] = 10°[dyne] = 0.22481 [lby]

I [atm] = 1.01325 [bar] = 1.01325 x 10° [Pa] = 14.696[psi] = 760 [torr]
1[J] = 107[erg] = 0.23885[cal] = 9.4781 x 10~4[BTU] = 6.242 x 10'® [eV]
For eleciric and magnetic properties see Appendix D: Table D.2.

COMMON VALUES FORTHE GAS CONSTANT, R

8.314 [J/(mol K)]
0.08314 [(L bar)/(mol K}]
1.987 [cal/(mol K)]
1.987 [BTU/(Ibmol °R)]
0.08206 [(L atm)/(mol K)]

[m/s]
[molecule/mol]
[J/(mol K)]
[J/(molecule K)]
[C/(mole)]

[C]

[esu]

kgl

(ke]

[Pa]

[m?/s]



SPECIAL NOTATION

Properties
Uppercase
Lowercase

Circumflex, lowercase

Mixtures

Subscript i

Bar, subscript i
As is

Delta, subscript mix

Other
Dot

Overbar

A complete set of notation used in this text can be found on page (ix)

Extensive
Intensive (molar)

Intensive (specific)

Pure species property

Partial molar property
Total solution property

Property change of mixing:

Rate of change

Average

K:V,G,U,H,S,...
k= % =v,g,uh,s,...
k=%=%g0h5,...

Ki . ‘11'7 Gi’ Ui’HhSis ]

ki:vi.gisui hi,si, ...

K:V,G,UMH,S,...
k:v,g.uh,s,...

AKmix : AVmixa AIimi}ca ASmbtr, fee

Akmix . AVmi)c’ Ahmi.)(a Asmixs ..

O.W,nV,...

V2,Cp, ...
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Preface

You see, I have made contributions to biochemistry. There were no courses in molecular biology.
I had no courses in biology at all, but I am one of the founders of molecular biology. I had no courses
in nutrition or vitaminology. Why? Why am I able to do these things? You see, I got such a good
basic education in the fields where it is difficult for most people to learn by themselves.

Linus Pauling
On his ChE education

» AUDIENCE

Engineering and Chemical Thermodynamics is intended for use in the undergraduate thermo-
dynamics course(s) taught in the sophomore or junior year in most Chemical Engineering (ChE)
Departments. For the majority of ChE undergraduate students, chemical engineering thermo-
dynamics, concentrating on the subjects of phase equilibria and chemical reaction equilibria, is
one of the most abstract and difficult core courses in the curriculum. In fact, it has been noted
by more than one thermodynamics guru (e.g., Denbigh, Sommerfeld) that this subject cannot be
mastered in a single encounter. Understanding comes at greater and greater depths with every
skirmish with this subject. Why another textbook in this area? This textbook is targeted specif-
ically at the sophomore or junior undergraduate who must, for the first time, grapple with the
treatment of equilibrium thermodynamics in sufficient detail to solve the wide variety of problems
that chemical engineers must tackle. It is a conceptually based text, meant to provide students
with a solid foundation in this subject in a single iteration. Its intent is to be both accessible and
rigorous. Its accessibility allows students to retain as much as possible through their first pass while
its rigor provides them the foundation to understand more advanced treatises and forms the basis
of commercial computer simulations such as ASPEN®, HYSIS®, and CHEMCAD®,

» GOALS AND METHODOLOGY

The text was developed from course notes that have been used in the undergraduate chemical
engineering classes at Oregon State University since 1994. It uses alogically consistent development
whereby each new concept is introduced in the context of a framework laid down previously. This
textbook has been specifically designed to accommodate students with different learning styles.
Its conceptual development, worked-out examples, and numerous end-of-chapter problems are
intended to promote deep learning and provide students the ability to apply thermodynamics to
real-world engineering problems. Two major threads weave throughout the text: (1) a common
methodology for approaching topics, be it enthalpy or fugacity, and (2) the reinforcement of
classical thermodynamics with molecular principles. Whenever possible, intuitive and qualitative
arguments complement mathematical derivations. »

The basic premise on which the text is organized is that student learning is enhanced by
connecting new information to prior knowledge and experiences. The approach is to introduce
new concepts in the context of material that students already know. For example, the second law
of thermodynamics is formulated analogously to the first law, as a generality to many observations
of nature (as opposed to the more common approach of using specific statements about obtaining
work from heat through thermodynamic cycles). Thus, the experience students have had in learning
about the thermodynamic property energy, which they have already encountered in several classes,
is applied to introduce a new thermodynamic property, entropy. Moreover, the underpinnings of
the second law—reversibility, irreversibility, and the Carnot cycle—are introduced with the first
law, a context with which students have more experience; thus they are not new when the second
law is introduced.
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» LEARNING STYLES

There has been recent attention in engineering education to crafting instruction that targets the
mary ways in which students learn. For example, in their landmark paper “Learnings and Teaching
Styles in Engineering Education,” Richard Felder and Linda Silverman define specific dimensions
of learning styles and corresponding teaching styles. In refining these ideas, the authors have
focused on four specific dimensions of learning;: sequential vs. global learners; active vs. reflective
learners; visual vs. verbal learners; and sensing vs. intuitive learners. This textbook has been
specifically designed to accommodate students with different learning styles by providing avenues
for students with each style and, thereby, reducing the mismatches between its presentation of
content and a student’s learning style. The objective is to create an effective text that enables
students to access new concepts. For example, each chapter contains learning objectives at the
beginning and a summary at the end. These sections do not parrot the order of coverage in the text,
but rather are presented in a hierarchical order from the most significant concepts down. Such a
presentation creates an effective environment for global learners (who should read the summary
before embarking on the details in a chapter). On the other hand, to aid the sequential learner, the
chapter is developed in a logical manner, with concepts constructed step by step based on previous
material. Identified key concepts are presented schematically to aid visual learners. Questions
about key points that have been discussed previously are inserted periodically in the text to aid
both active and reflective learners. Examples are balanced between those that emphasize concrete,
numerical problem solving for sensing learners and those that extend conceptual understanding
for intuitive learners.

In the cognitive dimension, we can form a taxonomy of the hierarchy of knowledge that a
student may be asked to master. For example, a modified Bloom’s taxonomy includes: remember,
understand, apply, analyze, evaluate, and create. The tasks are listed from lowest to highest level.
To accomplish the lower-level tasks, surface learning is sufficient, but the ability to perform at the
higher levels requires deep learning. In deep learning, students look for patterns and underlying
principles, check evidence and relate it to conclusions, examine logic and argument cautiously
and critically, and through this process become actively interested in course content. In contrast,
students practicing surface learning tend to memorize facts, carry out procedures algorithmically,
find it difficult to make sense of new ideas, and end up seeing little value in a thermodynamics
course. While it is reinforced throughout the text, promotion of deep learning is most significantly
influenced by what a student is expected to do. End-of-chapter problems have been constructed
to cultivate a deep understanding of the material. Instead of merely finding the right equation
to “plug and chug,” the student is asked to search for connections and patterns in the material,
understand the physical meaning of the equations, and creatively apply the fundamental principles
that have been covered to entirely new problems. The belief is that only through this deep learning
is a student able to synthesize information from the university classroom and creatively apply it to
new problems in the field.

»# SOLUTION MANUAL

The Solutions Manual is available for instructors who have adopted this book for their course.
Please visit the Instructor Companion site located at www.wiley.com/college/koretsky to register
for a password.

» MOLECULAR CONCEPTS

While outside the realm of classical thermodynamics, the incorporation of molecular concepts
is useful on many levels. In general, by the time undergraduate thermodynamics is taught, the
chemical engineering student has had many chemistry courses, so why not take advantage of
this experience! Thermodynamics is inherently abstract. Molecular concepts reinforce the text’s

'Felder, Richard M., and Linda K. Silverman, Engr: Education, 78, 674 (1988).
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intuitive approach, providing more access to the typical undergraduate student than could a mathe-
matical derivation alone. A molecular approach is also becoming important on a technological level,
with the increased development of molecular-based simulations. Finally, molecular understanding
allows the student to form a link between the understanding of equilibrium thermodynamics and
other fundamental engineering sciences, such as transport processes.

» THERMOSOLVER SOFTWARE

The accompanying ThermoSolver software has been specifically designed to complement the text.
This integrated, menu-driven program is easy to use and learning-based. ThermoSolver readily
allows students to perform more complex calculations, giving them opportunity to explore a wide
range of problem solving in thermodynamics. Equations used to perform the calculations can be
viewed within the program and use nomenclature consistent with the text. Since the equations
from the text are integrated into the software, students are better able to connect the concepts
to the software output, reinforcing learning. The ThermoSolver software may be downloaded for
free from the student companion site located at www.wiley.com/college/koretsky.

= ACKNOWLEDGMENTS

= NOTATION

Special Notation

I would like to acknowledge and offer thanks to those individuals who have provided thoughtful
input: Wayne Anderson, Connelly Barnes, Hugo Caran, Chih-hung (Alex) Chang, John Falconer,
Dennis Hess, P. K. Lim, Erik Muehlenkamp, Jeff Reimer, Skip Rochefort, Wyatt Tenhaeff, Darrah
Thomas, and David Wetzel. Last, but not least, I am tremendously grateful to the students with
whom, over the years, I have shared the thermodynamics classroom.

The study of thermodynamics inherently contains detailed notation. Below is a summary of the
notation used in this text. The list includes: special notation, symbols, Greek symbols, subscripts,
superscripts, operators and empirical parameters. Due to the large number of symbols as well as
overlapping by convention, the same symbol sometimes represents different quantities. In these
cases, you will need to deduce the proper designation based on the context in which a particular

symbol is used.

Properties
Uppercase Extensive K:V.G,UH,S,...
Lowercase Intensive (molar) k= % =v,gu,h,s,
Circumflex, lowercase Intensive (specific) k= % = 13,{2,13,}; s, ...
Mixtures
Subscript i Pure species property K :V,G,U,H.,S,,...
ki v, gounh,si, ...
Bar, subscript i Partial molar property K :V.,G,U.H.S,...
As is Total solution property K:V,GU,H,S,...
k:v,guh,s,...
Delta, subscript mix Property change of mixing: ARy * AVie, AH e, AS i, - -
Ak A, AP, ASpiie, .« «
Other
Dot Rate of change

Q.W,a,V,...
Overbar Average V2 Cp
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Symbols

ex, Ex
epa EP

T T 2 Moy M b

PP SRE T
SSEoa

P~
=

by Ao

>~

LA

Generic species in

a mixture

Helmholtz energy
Labels for processes to
be compared

Area

Activity of species §
Species 4 in a chemical
reaction

Element vector

Heat capacity at
constant pressure

Heat capacity at
constant volume

Molal concentration of
species

Mass concentration of
species i

Molar concentration of
species i

Coefficient of performance
Bond i —j dissociation
energy

Energy

Kinetic energy
Potential energy

Electric field

Force

Flow rate of feed
Faraday’s constant
Degrees of freedom
Fugacity of pure species i
Fugacity of species  in

a mixture

Total solution fugacity
Gibbs energy
Gravitational acceleration
Enthalpy

Enthalpy of solution
Henry’s law constant of
solute ¢

Interstitial

Ionization energy

Tonic strength

Generic representation of any

thermodynamic property
except Por T

Boltzmann’s constant
Heat capacity ratio (cp/c.)
Spring constant
Equilibrium constant

Binary interaction parameter

between species i and j

w

K-value

Flow rate of liquid
Number of chemical species
Mass

Molecular weight
Number of moles
Concentration of electrons
in a semiconductor
Intrinsic carrier
concentration

Number of molecules in the
system or in a given state
Avagadro’s number
Objective function
Concentration of holes in a
semiconductor

Pressure

Partial pressure of species ¢
in an ideal gas mixture
Saturation pressure of
species i

Heat

Electric charge

Distance between two
molecules

Gas constant

Number of independent
chemical reactions
Stoichiometric constraints
Entropy

Time

Temperature
Temperature at the boiling
point

Temperature at the
melting point

Upper consulate
temperature

Internal energy

Volume

Flow rate of vapor
Vacancy

Velocity

Work

Flow work

Shaft work

Non-Pv work

Weight fraction of

species i

Quality (fraction vapor)
Position along x-axis

Mole fraction of liquid
species i



Greek Symbols

Subscripts

2

E T 2 I

;
B

B
E

¥
@
4
Vi

Henry’s
i

m
Y

€3

ab,.. . i ...

atm
c

C
cale
cycle

exp

f

fus
E

H
high

ideal gas
in

inerts
irrev

{

low

mix

Mole fraction of solid species i

Mole fraction of vapor species i

Compressibility factor
Position along z-axis

Polarizability of species i
Thermal expansion coefficient
Formula coefficient matrix
Electrochemical potential
Fugacity coefficient of
pure species i

Fugacity coefficient of
species  in a mixture
Total solution fugacity
coefficient

Activity coefficient

of species i

Activity coefficient

using a Henry’s

law reference state
Molality based activity
coefficient

Mean activity coeflicient
of anions and cations

in solution

Generic species in a
mixture

Atmosphere

Critical point

Cold thermal reservoir
Calculated

Property change over a
thermodynamic cycle
Experimental

Property value of

formation (with A)

Fusion

External

Hot thermal reservoir

High value (e.g. in
interpolation)

Ideal gas

Flow stream into the system
Inerts in a chemical reaction
Irreversible process

Liquid

Low value (e.g. in
interpolation)

Equation of state parameter
of a mixture

— Tt
()

>

net
out

products

pc
-
reactants

real gas
rev

xXn

sub
surr

sys

univ

Preface -¢ xi

Valence of an ion in solution
Labels of specific states

of a system

Generic species in a mixture

Efficiency factor
Lagrangian multiplier
Molecular potential
energy

Activity coefficient of

solid species i

Molecular potential energy
between species { and j
Isothermal compressibility
Dipole moment of species i
Chemical potential of
species i

Joule-Thomson coefficient
Phases

Osmotic pressure

Density

Stiochiometric coefficient
Pitzer acentric factor
Extent of reaction

Net heat or work
transferred

Flow stream out of the
system

Products of a chemical
reaction
Pseudocritical
Reduced property
Reactants in a
chemical reaction
Real gas

Reversible process
Reaction

Sublimation
Surroundings

System

Universe

Vapor

Vaporization

In the z direction
Labels of specific states
of a system

Generic species in

a mixture
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Superscripts
dep Departure function (with A) s Solid
E Excess property sat At saturation
ideal Ideal solution v Vapor
ideal gas Ideal gas a, Generic phases
molecular Molecular (in equilibrium)
l Liquid y Volume exponential of
o Value at the reference state a polytropic process
real Real fluid with o0 At infinite dilution
intermolecular (0) Simple fluid term
interactions (1) Correction term
Operators
d Total differential 8 Inexact (path dependent)
d Partial differential differential
A Difference between the final In Natural (base e) logarithm
and initial value of log Base 10 logarithm
a state property I Curnulative product
v Gradient operator operator
f Integral > Cumulative sum operator
Empirical parameters
a, b van der Waals or Redlich-Kwong attraction and size parameter,
respectively
a ba k. Empirical parameters in various cubic equations of state
A Two-suffix Margules activity coefficient model parameter
Ay Three-suffix Margules activity coefficient model parameters (one form)
AB Three-suffix Margules or van Laar activity coefficient model parameters
A B Debye-Huckel parameters
A B, C Empirical constants for the Antoine equation
A B C,DE Empirical constants for the heat capacity equation
B,C,D Second, third and fourth virial coefficients
B.C,D Second, third and fourth virial coefficient in the pressure expansion
Cs Constant of van der Waals or Lennard- Jones attraction
C, Constant of intermolecular repulsion potential of power +~"
& Lennard-Jones energy parameter
Ay Wilson activity coefficient model parameters
o Distance parameter in hard sphere, Lennard-Jones and other potential

functions
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